
Online Appendix
The Stable Transformation Path

Francisco J. Buera∗ Joseph Kaboski† Mart́ı Mestieri‡

Daniel G. O’Connor§

November 20, 2023

There are seven sections in this appendix. Appendix A contains the proof of
Theorem 1 in the main text. The derivation of the Euler Equation (14) in the main
text is provided in Appendix B. We derive the dynamics of the system around the
BGP in Appendix C. Appendix D provides a constructive proof of Proposition 3.
Appendix E discusses our proposed algorithm for computing the STraP. Appendix F
provides details of data construction for the empirical aspects of the paper in Section
5.

A Proof of Existence and Uniqueness of the STraP

This section provides a proof of Theorem 1 in the main text. The proof consists of
two steps. The first step is standard, and we provide a succinct description (referring
the reader to Acemoglu (2009) for details). The second step is novel, and we devote
the majority of the proof to provide a detailed discussion.

The first step in proving our result is to characterize the solution of the Planner’s
problem going forward given capital k at time τ . To apply the standard results from
optimal control, we need to de-trend our variables so that they are bounded. To do
that, we will define two effective productivity terms. We define Ak(t) implicitly by

1 =
∑
j

ωxj

(
Ak(t)1−αj

Ax(t)Aj(t)

)1−σx
.

This productivity term captures how capital and investment grows. We define an
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implicit productivity term for consumption Ac(t) similarly

1 =
∑
j

ωcj

(
Ac(t)εj

Ak(t)αjAj(t)

)1−σc
.

We can then rewrite the consumer problem in terms of the bounded variables
k(t) ≡ K(t)

Ak(t)
, x(t) ≡ X(t)

Ak(t)
and c(t) ≡ C(t)

Ac(t) . For our purposes, it will be easier to work

with the planner’s problem. Define c(x, k, t) as the maximum de-trended consump-
tion that the planner could get at time t with detrended capital k and detrended
investment x. This corresponds with the competitive equilibrium and is implicitly
defined, along with e, pj, r, w, by the equations

rk =
∑
j

αj

[
ωxj

(
Ak(t)1−αj

Ax(t)Aj(t)

)1−σx
p1−σx
j x+ ωcj

(
Ac(t)εj

Ak(t)αjAj(t)

)1−σc
p1−σc
j cεj(1−σc)eσc

]

wL =
∑
j

(1−αj)

[
ωxj

(
Ak(t)1−αj

Ax(t)Aj(t)

)1−σx
p1−σx
j x+ ωcj

(
Ac(t)εj

Ak(t)αjAj(t)

)1−σc
p1−σc
j cεj(1−σc)eσc

]

pj =

(
r

αj

)αj ( w

1− αj

)1−αj

1 =
∑
j

ωxj

(
Ak(t)1−αj

Ax(t)Aj(t)

)1−σx
p1−σx
j .

e1−σc =
∑
j

ωcj

(
Ac(t)εj

Ak(t)αjAj(t)

)1−σc
p1−σc
j cεj(1−σc).

Each of these equations are smooth i.e., infinitely continuously differentiable, so by
the implicit function theorem, c(x, k, t) is also smooth in a neighborhood around any
point.

Then we can write the current value hamiltonian

Ac(t)1−θu(x(t), k(t), t)− 1

1− θ
+ µ(t) [x(t)− (δ + γk(t))k(t)]

where γk(t) ≡ Ȧk(t)
Ak(t)

, and u(x, k, t) ≡ c(x,k,t)1−θ

1−θ .
The assumptions on preferences and production then guarantee the solution is

interior. Moreover, Theorem 7.9 in Acemoglu (2009) holds, so any solution must
satisfy the first order conditions of the Hamiltonian:

0 = Ac(t)1−θ ∂u(x, k, t)

∂x
+ µ(t)

ρµ(t)− µ̇(t) = Ac(t)1−θ ∂u(x, k, t)

∂k
− µ(t)(δ + γk(t)).
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We can then solve these to get an Euler equation for investment:

ẋ(t)

x(t)
=

1

θ(x, k, t)

[
∂u
∂k
∂u
∂x

+ δ + ρ+ γk(t) + (1− θ)γc(t)−
∂2u
∂x∂k
∂u
∂x

(x− (δ + γk(t))k)−
∂2u
∂x∂t
∂u
∂x

]
,

(A.1)

where θ(x, k, t) =
∂2u
∂x2

x
∂u
∂x

and γc(t) ≡ Ȧc(t)
Ac(t) . The system is further characterized by the

law of motion
k̇(t) = x(t)− (δ + γk(t)) k(t) (A.2)

Theorem 7.12 in Acemoglu (2009) holds (since the value function is differentiable
and its derivative converges to 0 along any feasible path), implying that any interior
solution path satisfies the transversality condition

lim
t→∞

H(t, k(t), x(t), λ(t)) = 0. (A.3)

Finally, the maximized Hamiltonian is strictly concave in the state variable so the
continuous path defined by the law of motion (equation A.2), the Euler equation
(equation A.1), and the transversality condition (equation A.3) is the unique solution
to the planner’s problem.

Now we proceed to the second step of the proof. In this part, we need to ensure
that the system is Lipschitz continuous to invoke some of the results from the theory
of ordinary differential equations. This requires that the production functions are
Lipschitz continuous. We therefore leverage the fact that they satisfy the Inada
conditions and define an ε > 0 that bounds capital away from 0 with the property
that if k(τ) ∈ [ε, k̄], then k(t) ∈ [ε, k̄] for all t > τ . Given that the production
functions are C2 for all (k, t) ∈ (0,∞) × R, it is Lipschitz continuous in [ε, k̄] and
we focus on that interval. We also define an X(k) and X(k) so that for all t ∈ R
and k ∈ [ε, k̄], the optimal investment is always in x(t) ∈ (X(k), X(k)) and that
implies that c(x, k, t) is bounded away from 0. Then, we can restrict the domain of
investment to the compact interval [X(k), X(k)] without loss.

The Euler equation and the law of motion for capital determine a two dimensional
non-autonomous system. In the first step of our proof, we have shown that there is
a unique consumption and investment level for a given starting capital k and time
t consistent with optimization. This investment function, which we label x(k, t),
is the unique investment level that shoots to the asymptotic balanced growth path
with capital level k∞. This allows us to write our system as a one dimensional non-
autonomous differential equation

k̇(t) = x(k(t), t)− (δ + γk(t)) k(t). (A.4)

By construction, given initial conditions (k0, τ) ∈ [ε, k̄] × R, k(t) → k∞ as t → ∞.
Proving existence and uniqueness of the STraP comes down to proving that there
exists one unique path of this system that has k(t)→ k−∞ as t→ −∞. To do that,
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we will use the anti-funnel existence and uniqueness Theorem 4.7.5 from Hubbard
and West (1991).

Let us outline how the rest of the proof proceeds. At a broad level, the main
complication in this step is characterizing x(k, t). Define c−(k), x−(k) as the optimal
choice of consumption and investment respectively given a starting capital amount
in the negative asymptotic optimal growth problem. Define c+(k), x+(k) similarly
for the positive asymptotic optimal growth problem. The usual growth phase plane
analysis gives us information about c−(k) and c+(k). For example, linearizing c−(k)
around k−∞ tells us that c is continuously differentiable and increasing in k around
the steady state. In Lemma A.1, we prove that these properties extend to c(k, t) and
x(k, t) for t close enough to −∞. We use this result to check some of the conditions
needed for the anti-funnel theorem in the ensuing lemmas. In Lemma A.3, we show
that equation (A.4) gets close to the law of motion for the negative asymptotic optimal
growth problem for t → −∞. Then using these results, we construct an anti-funnel
and apply the anti-funnel theorem in Proposition A.1.

We begin by characterizing the asymptotic behavior of x(k, t). We reparametrize
time to lie in the compact interval [0, 1] where 0 corresponds to t = −∞ and 1
corresponds to t =∞. Then we can use continuity to extend results about functions
at t = ±∞ to functions where t ∈ R. We will define the function h : R → (0, 1) as
h(t) = g(et/(1 + et)) where

g(x) = (1− x)x
1
2 + x

(
1− (1− x)

1
2

)
.

et/(1+et) takes t ∈ (−∞,∞) and maps it to (0, 1). g(·) is an monotonically increasing

function that looks like x
1
2 as x → 0 and 1 − (1 − x)

1
2 as x → 1. h will then be our

way of mapping time to the interval [0, 1] and the g adjustment simplifies some of the
limits.

Lemma A.1. There exists a function x̌ :
[
ε, k̄
]
× [0, 1] → [−X(k), X(k)] with the

following properties:

• x̌(k, 0) = x−(k) for all k ∈ [ε, k̄],

• x̌(k, 1) = x+(k) for all k ∈ [ε, k̄],

• x̌(k, h(t)) = x(k, t) for all k ∈ [ε, k̄] and t ∈ (−∞,∞), and

• x̌(k, z) is continuously differentiable.

Proof. It is easy to construct a function x̌(k, z) that satisfies the first three properties
simply by fiat. The only thing to note is that this must be a function since our
maximization theorem guarantee a unique maximum.

The harder step is proving that x̌(k, z) is continuously differentiable. We will do
that by showing that it is a manifold defined by a continuously differentiable ordinary
differential equation system in a compact set.
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Before we do that, we will start by proving that the system is continuous. In order
to do this, we will apply Berge’s maximum theorem. We can rewrite the planner’s
maximization problem as

W(z) = max
x(t),k(t)

∫ ∞
0

e−ρ(t+h−1(z))

(
Ac(t+ h−1(z))

Ac(h−1(z))

)1−θ

u(x(t), k(t), t+ h−1(z))dt

such that
k̇(t) = x(t)− (δ + γk(t+ h−1(z)))k(t)

and
k(0) = k0

where we have simply done a change of variables on starting time τ to z and divided
by Ac(τ). Berge’s maximum theorem then guarantees that the choice variables x(t)
and k(t) are continuous in z if the conditions are satisfied. That would then guarantee
that x̌(k, z) is continuous, even as z → 0, 1.

The conditions are that the utility function are continuous and the constraint
correspondence is continuous, compact valued, and contains no empty values. We
will use the discounted norm ||z(·)|| ≡

∫∞
0
e−ρtz(t)dt. Ac(t) grows at the rate

1
1−αa

1−θ
εa

[αaγx + γa] in the −∞ limit and the rate 1
1−αs

1−θ
εs

[αsγx + γs] in the +∞
limit. Then as long as ρ is greater than both of those, we can use the dominated
convergence theorem and the continuity of the integrand implies the continuity of the
integral. Therefore, Berge’s theorem holds and x̌(k, z) is continuous in its arguments.

Next, we need to prove that x̌(k, z) is continuously differentiable. We do this
by considering the differential equations that define the solution to the planner’s
problem. We will show that x̌(k, z) is a stable manifold in this system, and so, will be
continuously differentiable if the system is nice. We can write them as a 3-dimensional
autonomous system by introducing a variable s that stands in for time:

k̇(t) = x− (δ + γk(s)) k, (A.5)

ẋ(t) =
x

θ(x, k, s)

[
−R(x, k, s) + δ + ρ+ γk(s) + (1− θ)γc(s)

+ ζk(x, k, s) (x− (δ + γk(s))k) + ζt(x, k, s)

]
,

(A.6)

ṡ(t) = 1 (A.7)

where R(x, k, t) = −
∂u
∂k
∂u
∂x

, ζk(x, k, t) = −
∂2u
∂x∂k
∂u
∂x

, and ζt(z, k, t) = −
∂2u
∂x∂t
∂u
∂x

The variable s is

unbounded in this system which makes it cumbersome to deal with. Therefore, we
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reparametrize time with z = h(s) ∈ (0, 1). This autonomous system can be written

k̇ = x−
(
δ + γk(h

−1(z))
)
k, (A.8)

ẋ =
x

θ(x, k, h−1(z))

[
−R(x, k, h−1(z)) + δ + ρ+ γk(h

−1(z)) + (1− θ)γc(h−1(z))

+ ζk(x, k, h
−1(z))(x− δk − γk(h−1(z))k) + ζt(x, k, h

−1(z))
]
,

(A.9)

ż = h′(h−1(z)), (A.10)

and it is defined on the set [ε, k̄]× [X(k), X(k)]×(0, 1). We denote the right hand side
of equations (A.8), (A.9) and (A.10) by Fk(k, x, z), Fx(k, x, z), and Fz(k, x, z), respec-
tively. The system can easily be extended to the compact set [ε, k̄]× [X(k), X(k)]×
[0, 1] by replacing γk(t), γc(t), R(x, k, t), ζk(x, k, t), ζt(x, k, t), θ(x, k, t) and h′(t) with
their limits as z → 0, 1. To do that, we need to confirm that those limits exist.

Proving the existence of the limits γk(t) and γc(t) follows pretty quickly from im-
plicitly differentiating the expressions for Ak(t) and Ac(t). The limits on the other
terms is more difficult because they are multiple derivatives of the complicated func-
tion u(x, k, t). Instead what we do is notice that it is very easy to rewrite the function
u(x, k, t) as a function of z, u(x, k, z). Then since the function is implicitly defined
by smooth functions on the whole interval z ∈ [0, 1], u(x, k, z) is also a smooth func-
tion defined on all (x, k, z). Therefore, the limits of R(x, k, z), ζk(x, k, z), ζt(x, k, z),
θ(x, k, z) all exist correspond with their values, and the derivatives converge as well.
Since h(t) converges to a real number and h′ converges, it follows that h′ must con-
verge to 0 as t→ ±∞.

Next, we can take the total differential of the function Fk, Fx, and Fz to get

dFk(k, x, z) = −
[
δ + γk(h

−1(z))
]
dk + dx− γ̇k(h−1(z))k

(
h−1
)′

(z)dz, (A.11)

dFx(k, x, z) =
x

θ(x, k, h−1(z))

[
− ∂R

∂k
+
∂ζk
∂k

(x− δk − γk(h−1(z))k)

− ζk(δ + γk(h
−1(z))) +

∂ζt
∂k
− Fx(k, x, z)

∂θ

∂k

]
dk

+
x

θ(x, k, h−1(z))

[
− ∂R

∂x
+
∂ζk
∂x

(x− δk − γk(h−1(z))k) + ζk

+
∂ζt
∂x
− Fx(k, x, z)

∂θ

∂x
+

1

x
Fx(k, x, z)

]
dx

+
x

θ(x, k, h−1(z))

[
− ∂R

∂t
+ γ̇k +

∂ζk
∂t

(x− δk − γk(h−1(z)))k − ζkγ̇k

+
∂ζt
∂t
− Fx(k, x, z)

∂θ

∂t

]
(h−1)′(z)dz,

(A.12)

dFz(k, c, z) = h′′(h−1(z))(h−1)′(z)dz. (A.13)
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These derivatives all exist, they are continuous, and k, x, and z are all bounded in a
compact set. Therefore, the original system must be lipschitz continuous.

The next step is finding our function x̌(k, z) in this system. Notice that there
are two steady states with positive consumption in the system defined by equations
(A.8), (A.9) and (A.10): one at (k∞, x∞, 1) and another at (k−∞, x−∞, 0). Next,
we linearize this system of equations around the (k∞, x∞, 1) steady state. Then a
deviation k∞ + k̂(t), x∞ + x̂(t), and 1 + ẑ(t) must locally satisfy ˙̂

k(t)
˙̂x(t)
˙̂z(t)

 =

 −δ − γk+ 1 0
c∞

1− 1−θ
εj

αj(1− αj) y∞k2∞ + αj
y∞
k2∞
x∞ −αj y∞k∞ 0

0 0 a+


k̂(t)
x̂(t)
ẑ(t)

 . (A.14)

The associated characteristic polynomial to (A.14) is

(a+ − λ)

[
(δ + γk+ + λ)(αj

y∞
k∞

+ λ)− c∞

1− 1−θ
εj

αj(1− αj)
y∞
k2
∞

+ αj
y∞
k2
∞
x∞

]
.

The system has one positive and two negative eigenvalues. Thus, locally this stable
plane defines investment as a function of k and z.

We can then extend this to a manifold in the set [ε, k̄] × [X(k), X(k)] × (0, 1].
This manifold is the set of (x, k, z) that shoot to the asymptotic BGP. Clearly, our
optimally chose x(k, t) which is the same as x̌(k, z) must be on this manifold. And
by uniqueness, that is the only value of x on the manifold for a given k z. And
furthermore, we know that taking the limit as z → 0, x̌(k, z) converges to x̌(k, 0).
Therefore, the manifold also converges to that, and we can extend the manifold
to [ε, k̄] × [X(k), X(k)] × [0, 1]. Because the system is Lipschitz continuous, the
manifold must be continuously differentiable. Therfore, x̌(k, z) must be continuously
differentiable since it is the manifold.

We next present a series of Lemmas that build on Lemma A.1 that allow us to
show that the conditions for Theorem 4.7.5 of Hubbard and West (1991) hold in this
setting.1 To use the anti-funnel theorem in Hubbard and West, we will look at the

1For completeness, we state Theorem 4.7.5 from Hubbard and West (1991) here.

Theorem A.1. Let α(t) and β(t), β(t) ≤ α(t), be two fences defined for t ∈ [a, b) that bound an
antifunnel for the differential equation x′ = f(t, x). Let f(t, x) satisfy a Lipschitz condition in the
antifunnel. Furthermore, let the antifunnel be narrowing, with

lim
t→b

(α(t)− β(t)) = 0.

If (∂f/∂x)(t, x) ≥ w(t) in the antifunnel, where w(t) is a function satisfying∫ b

a

w(s)ds > −∞,

then there is a unique solution which stays in the antifunnel.
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backwards differential equation. Define k̃(t) = k(−t). This follows the differential
equation

˙̃k(t) = −x(k̃(t), t) + (δ + γk(−t)) k̃(t). (A.15)

We then want to show that there exists a unique time path k̃(t) with k̃(t) → k−∞

as t → ∞. Define F
(
k̃, t
)
≡ −x(k̃(t), t) + (δ + γk(−t)) k̃(t). We similarly define

the function that describes the backward capital motion in the negative asymptotic

growth problem: F−

(
k̃
)
≡ −x(k̃(t)) + (δ + γ−k) k̃(t).

Lemma A.2. On some interval U ⊂ [0, k̄] containing k−∞ in its interior, for all
ε > 0, there exists a T > 0 so that if t > T ,∣∣∣F (k̃,−t)− F− (k̃)∣∣∣ < ε, ∀k̃ ∈ I.

Proof. By Lemma A.1, x̌(k, z) is continuous on the compact region [ε, k̄] × [0, 1].
Therefore, it is absolutely continuous. Then ∀ε > 0, there exists a δ > 0 such that
|x̌(k1, z1)− x̌(k2, z2)| < ε, if max {|k1 − k2|, |z1 − z2|} < δ, where we use the sup norm.
In particular, if z2 = 0 and k1 = k2 ≡ k, then for z1 < δ, |x̌(k, z1) − x̌(k, 0)| < ε.
Transforming into time, if t1 < h(δ) then

|x(k, t1)− x−(k)| < ε,∀k ∈ [ε, k̄].

To finish the proof, we simply note that∣∣∣F (k̃,−t)− F− (k̃)∣∣∣ =
∣∣∣−x(k̃,−t)+ x−

(
k̃
)

+ +γk(−t)k̃ − γ−kk̃
∣∣∣

≤ ε+ |γk(−t)− γ−k| k̃
≤ 2ε

for t sufficiently large that |γk(−t)− γ−k| < ε
k̄
.

Lemma A.3. F
(
k̃, t
)

is Lipschitz continuous on some interval U containing k−∞ in

its interior. That is, there exists a K > 0 such that for all t ∈ [0,∞) and k̃1, k̃2 ∈ I,∣∣∣F (k̃1, t
)
− F

(
k̃2, t

)∣∣∣ ≤ K ∣∣∣k̃1 − k̃2

∣∣∣ .
Proof. Notice that x̌(k, z) is continuously differentiable. Therefore,

∣∣∣∂x̌(k,z)
∂k

∣∣∣ is contin-

uous on the compact interval [ε, k̄]× [0, 1] and is bounded above by some M1. Define
γ̄k ≡ supt∈R γk(t). Then for any t and k̃1, k̃2 ∈ I,∣∣∣F (k̃1, t

)
− F

(
k̃2, t

)∣∣∣ ≤ |δ + γk(−t)| ·
∣∣∣k̃1 − k̃2

∣∣∣+
∣∣∣x̌(k̃1, h(−t)

)
− x̌

(
k̃2, h(−t)

)∣∣∣
≤ 2 ·max {M1, |δ + γ̄k|}

∣∣∣k̃1 − k̃2

∣∣∣
Taking K ≡ d ·max {M1, |δ + γ̄k|} completes the proof.

8



Lemma A.4. There exists an interval U containing k−∞ in its interior, and a func-
tion w : [a,∞)→ R such that

∂F (k, t)

∂k
≥ w(t)

for k ∈ U where
∫∞
a
w(s)ds > −∞.

Proof. Notice that

∂F (k, t)

∂k
=

∂

∂k

[
−x
(
k̃,−t

)
+ (δ + γk (−t)) k̃

]
= −∂x(k̃,−t)

∂k
+ δ + γk(−t)

If one linearizes x−(k) around k−∞, one can see from the stable arm that

∂F (k−∞,∞)

∂k
> 0

Then by continuity, there exists a T > 0 and δ > 0 so that for k ∈ (k−∞ − δ, k−∞ + δ)

and t > T , ∂F (k,t)
∂k

> 0. Therefore, we can take U = (k−∞ − δ, k−∞ + δ) and w(t) =

min
{

infk∈U
∂F (k,t)
∂k

, 0
}

. Then w(t) = 0 for all t > T so that
∫∞
a
w(s)ds > −∞.

Proposition A.1. There exists a unique STraP.

Proof. We use Theorem 4.7.5 from Hubbard and West (1991) stated in Footnote 1
to show existence and uniqueness of the STraP. Lemma A.3 showed that the system
is Lipschitz. We need to construct the narrowing upper and lower fence. We restrict
attention to a symmetric interval around k−∞ where Lemmas A.2 through A.4 hold.
Define this as U ≡ [k−∞ − δ, k−∞ + δ]. This is possible as k−∞ was in the interior of
all of the intervals.

We describe the explicit construction of the upper fence. The construction of
the lower fence proceeds analogously by symmetry. Define k0 ≡ k−∞ + δ, k1 ≡
k−∞ + δ

2
, · · · , kn ≡ k−∞ + δ

2n
where n ∈ Z0. Take an ≡ F−(kn). Standard growth

dynamics tell us that F−(k) is increasing in k (recall that F−(k) is the backwards
dynamics). Therefore, monotonicity implies that F−(k) > an if k > kn. This also

implies that an > 0 for all n since F−(k−∞) = 0. By Lemma A.3, F
(
k̃, t
)

gets

arbitrarily close to F−(k). Therefore, for every n, there exists a Tn > 0 so that for
t > Tn, ∣∣∣F (k̃, t)− F− (k̃)∣∣∣ < an

2

for all k̃ ∈ U .
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We can now describe the explicit construction of the upper fence, α(t). Let α(t)
be a piecewise linear function starting at time T1 with α(T1) = k0 and proceeding
linearly to α(T2) = k1. Then the derivative of α is negative. Furthermore,

|F (α(t), t)− F−(α(t))| < a1

2

and
F−(α(t)) > F−(k1) = a1,

for all t ∈ [T1, T2]. Therefore, F (α(t), t) > 0 for all t ∈ [T1, T2] and α(·) counts
as a fence on this interval. Continue concatenating linear functions like this with
α(Tn) = kn−1 for all n. α′(t) < 0 for all t and F (α(t), t) > 0 for all t. Therefore, this
piecewise function is a fence converging to k−∞.

Analogously, we can construct a lower fence β(t) which converges to k−∞. We have
constructed α(t) and β(t) that bound an anti-funnel. The final condition is provided
by Lemma A.4. Thus, we can apply the theorem obtaining the desired result: there
is a unique time path that remains in the anti-funnel. This is the STraP.

B Derivation of the Euler Equation (14)

Omitting explicit time dependence, we can write the current-value Hamiltonian as

max
C,X,K

Cθ

1− θ
+ λ

WL+RK −

( ∑
i∈a,m,s

ωci (PiC
εi)1−σ

) 1
1−σ

− PxX

+ µ (X − δK)

(B.1)
where we have used the solution for the expenditure function E of nonhomothetic
CES (Comin et al., 2021) in the budget constraint. Denoting by H the Hamiltonian,
the first-order conditions imply:

dH
dC

= 0 =⇒ C−θ = λ
dE

dC
= λε̄Pc (B.2)

→ −θ Ċ
C

=
λ̇

λ
+

˙̄ε

ε̄
+
Ṗc
Pc

(B.3)

dH
dX

= 0 =⇒ Pxλ = µ (B.4)

→ Ṗx
Px

+
λ̇

λ
=
µ̇

µ
(B.5)

dH
dK

= −µ̇+ ρµ =⇒ λR + µ̇ = (ρ+ δ)µ (B.6)

→ µ̇

µ
= ρ+ δ − R

Px
(B.7)
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We have used in (B.2) that d lnE
d lnC

=
∑

i
PiCi
E
εi and the definition Pc ≡ E/C. Substitut-

ing (B.7) and (B.5) in (B.4) yields the Euler Equation. To obtain Equation (14) we
simply need to rewrite nominal expenditures to obtain C in units of the investment
good.

C Local Dynamics around the Asymptotic BGP

We characterize the dynamics of normalized variables, where the normalizing factor
is Ax (t)1/(1−α), and we use lowercase to indicate normalized variables. This normal-
ization and notational convention will continue throughout the paper. In terms of the
normalized variables, the local dynamics of the economy in the neighborhood of the
asymptotic BGP are given by the following system of ordinary differential equations:

θ
ċ(t)

c(t)
= αk(t)α−1 − δ − ρ+ (1− θ) (γ̄c (t)− γx − γ̄x (t))− θγx + γ̄x (t)

1− α
, (C.1)

k̇(t) = k(t)α − c(t)−
(
δ +

γx + γ̄x (t)

1− α

)
k(t), (C.2)

χ̇jc(t) = (σc − 1) (γj − γ̄c(t))χjc(t), (C.3)

χ̇jx(t) = (σx − 1) (γj − γ̄x(t))χjx(t), (C.4)

where j = a,m, s. Here γ̄c(t) = χac(t)γa +χmc(t)γm + (1−χac(t)−χmc(t))γs denotes
the consumption expenditure-weighted average of sectoral productivity growth, and
γx(t) denotes its investment analog.

To a first order, the effect of structural change on growth is summarized by its ef-
fect on the weighted averages γ̄c(t) and γ̄x(t). The last two terms in the log-linearized
Euler equation, equation (C.1), capture the two channels through which structural
change affects the growth of consumption. The first term corresponds to the effect
of structural change on the growth rate of the price of consumption relative to in-
vestment, which is given by the difference in the weighted average growth rate of
productivity. In the log case (θ = 1) this terms disappears. The second channel is
the standard normalizing term that guarantees that the system is (asymptotically)
stationary. This term is constant in a Neoclassical growth model, but here it is time-
varying for any finite time t, and it also appears in the log-linearized law of motion
of capital in equation (C.2).

Equations (C.3) and (C.4) show again that in this benchmark model, structural
change, as measured by the evolution of consumption and investment expenditure
shares, is independent of the Neoclassical dynamics of capital accumulation.

As discussed earlier, structural change precludes the existence of a BGP, apart
from the asymptotic ones. To understand the importance of this departure, it is
useful to characterize the speed of convergence of the system to the asymptotic BGPs
and to determine whether the dynamics of γ̄c(t) and γ̄x(t) are long-lasting compared
with the relatively fast Neoclassical dynamics (King and Rebelo, 1993).
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Toward this end, the following proposition characterizes the eigenvalues of the
system in (C.1)-(C.4), which allows us to compute the speed of convergence of the
economy to the asymptotic BGPs.2

Proposition C.1. The eigenvalues of the system in (C.1)-(C.4) are the solution to
the following characteristic polynomial:

Neoclassical eigenvalues︷ ︸︸ ︷∣∣∣∣∣α
(
k̄∞
)α−1 − δ − γx+γs

1−α − λ −1

c̄∞
α(α−1)

θ

(
k̄∞
)α−2 −λ

∣∣∣∣∣
× [(σc − 1) (γa − γs)− λ] [(σc − 1) (γm − γs)− λ]

× [(σx − 1) (γa − γs)− λ] [(σx − 1) (γm − γs)− λ]︸ ︷︷ ︸
Structural change eigenvalues

= 0 (C.5)

where k̄∞ and c̄∞ are the normalized steady-state levels of consumption and capital.

Proof. Log-linearizing the system in (C.1)-(C.4), we obtain:
k̇(t)
ċ(t)
χ̇ac(t)
χ̇mc(t)
χ̇ax(t)
χ̇mx(t)

 =


Bkk −1 0 0 Bkχax Bkχmx

Bck 0 Bcχac Bcχmc Bcχax Bcχmx

0 0 Bχacχac 0 0 0
0 0 0 Bχmcχmc 0 0
0 0 0 0 Bχaxχax 0
0 0 0 0 0 Bχmxχmx


︸ ︷︷ ︸

B


k(t)− k̄∞
c(t)− c̄∞
χac(t)
χmc(t)
χax(t)
χmx(t)



where Bkk = α
(
k̄∞
)α−1 − δ − γx

1−α −
γ3

1−α , Bkχax = −γa−γs
1−α k̄∞, Bkχmx = −γm−γs

1−α k̄∞,

Bck = c̄∞
α(α−1)

θ

(
k̄∞
)α−2

, Bcχac = c̄∞
1−θ
θ

(γa − γs), Bcχmc = c̄∞
1−θ
θ

(γm − γs), Bcχax =

c̄∞
α(1−θ)−1
θ(1−α)

(γa − γs), Bcχmx = c̄∞
α(1−θ)−1
θ(1−α)

(γm − γs), Bχacχac = (σc − 1) (γa − γs), Bχmcχmc =

(σc − 1) (γm − γs), Bχaxχax = (σx − 1) (γa − γs),Bχmxχmx = (σx − 1) (γm − γs), and
the remaining entries equal zero. A standard factorization of the characteristic poly-
nomial of matrix B gives (C.5).

Each term of the characteristic polynomial (C.5) defines eigenvalues of the system.
There is a sharp separation between two sets of eigenvalues. As labeled, the first term
defines a pair of eigenvalues that correspond to those in the standard Neoclassical one-
sector growth model. The negative eigenvalue is associated with the stable path, and
the positive, with the unstable. The remaining four terms define four eigenvalues, all
negative. Among the five negative (stable) eigenvalues, the smallest in absolute value
is the dominant eigenvalue because it governs the system dynamics asymptotically.

2Acemoglu and Guerrieri (2008) provide a related characterization in the proof of their Theorem
2.
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Importantly, for quantitatively relevant values of the sectoral productivity dif-
ferentials, the eigenvalues associated with structural change are smaller than those
governing Neoclassical dynamics. Equivalently, the half-lives of the structural change
dynamics are long relative to those of the Neoclassical transitional dynamics. For
instance, if we set σx = σc = 0 (implying the fastest possible convergence from the
structural change eigenvalues), γa = 0.05, γm = 0.02, and γs = 0.01, the dominant
eigenvalue governing the local dynamics of structural change implies a half-life of
70 years. This is an order of magnitude larger than the half-life of the Neoclassical
transitional dynamics implied by the negative Neoclassical eigenvalue.3

D Proof of Proposition 3

We present a constructive proof of Proposition 3. We remind the reader of the
notation introduced in the main text, c = C̃/A1/(1−α)

x , k = K/A1/(1−α)
xt , C̃ = PcC/Px.

We also define gx(t) = Ȧx
Ax and f(t) = Ṗx

Px
− Ṗc

Pc
. Note that time dependence for gx

and f comes only through the evolution of sectoral TFPs, Ai(t), i = {a,m, s}.4 The
dynamic system given by the Euler equation and the law of motion for capital in this
notation are

k̇

k
=kα−1 − c

k
−
(
δ +

gx(t)

1− α

)
, (D.1)

θ
ċ

c
=αkα−1 − δ − ρ+ (1− θ) f (t)− θ

1− α
gx(t). (D.2)

Asymptotic Behavior: Balanced Growth Paths We begin by discussing the
asymptotic behavior of the system. Note that the dynamic system becomes au-
tonomous in the limit. Since

lim
t→±∞

f(t) =− γx, (D.3)

lim
t→∞

gx(t) =γx + γs, (D.4)

lim
t→−∞

gx(t) =γx + γa, (D.5)

we have that the dynamic system does not directly depend on time as t → ±∞. In
this case, we have that the dynamic system has a steady state (BGP) characterized

3See King and Rebelo (1993) for a thorough discussion on the speed of convergence of the Neo-
classical growth model.

4For f the factor prices cancel out since all sectors have the same factor intensities and the
consumption and investment aggregators are constant returns to scale.
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by the system of equations

0 =kα−1 − c

k
−
(
δ +

γx + γi
1− α

)
, (D.6)

0 =αkα−1 − δ − ρ− (1− θ) γx −
θ

1− α
(γx + γi). (D.7)

Rearranging the second equation and then substituting in the first one we find that

k̄±∞ =

(
α

δ + ρ+ (1− θ) γx + θ
1−α(γx + γi)

) 1
1−α

(D.8)

( c̄
k̄

)
±∞

=
δ + ρ+ (1− θ) γx + θ

1−α(γx + γi)

α
− δ − γx + γi

1− α
, (D.9)

where i denotes the appropriate limiting sector. Since capital and consumption cannot
be negative, we assume that the parameters above are such that this condition is
satisfied. In particular, we note that this imposes the constraint

δ + ρ+ (1− θ) γx + θ
1−α(γx + γi)

α
− δ − γx + γi

1− α
> 0. (D.10)

For the case α = θ (that we use below) we have that( c̄
k̄

)
±∞

=
1− α
α

(
δ + γx +

ρ

1− α

)
> 0. (D.11)

In what follows, we require that the dynamic system defined over t ∈ (t, t) con-
verges to these asymptotic paths as time goes to ±∞. Proposition A.1 ensures that
this limit is well defined and unique.

Model Dynamics: Computing the STraP We proceed making use of the as-
sumption that α = θ. This allows us to decouple the dynamical system and first solve
for z = c

k
. Subtracting the law of motion for capital from the Euler equation, we have

that
ż

z
= z + δ − δ + ρ− (1− α)f(t)

α
. (D.12)

This differential equation to a class known as Bernoulli ordinary differential equations.
To solve it, we proceed with a change of variables. Define v = 1/z, (note that
this implies that v̇ = −z−2ż) and the equation becomes a first-order linear ordinary
differential equation

v̇ −
(
δ + ρ

α
− δ − 1− α

α
f (t)

)
v + 1 = 0. (D.13)
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This equation can be solved using the integrating factor λ (t) = e−
∫ t
t [−

1−α
α
f(s)+( δ+ρα −δ)]ds.

The previous differential equation can be written as

d

dt
(λ(t)v) = −λ(t). (D.14)

Using that λ(t) = 1, we can use the Fundamental Theorem of Calculus to obtain

λ(t)v(t)− v(t) = −
∫ t

t

λ(s)ds. (D.15)

It is also useful to introduce notation for the integral appearing in the integrating
factor, F (t) − F (t) ≡

∫ t
t

[
−1−α

α
f (s) +

(
δ+ρ
α
− δ
)]
ds, so that λ(t) = e−(F (t)−F (t)).

Equation (D.15) can be rewritten as

e−F (t)v(t)− e−F (t)v(t) = −
∫ t

t

e−F (s)ds. (D.16)

Taking the limit as t→∞ and using that the system converges to the BGP, we can
obtain the expression for the unique initial value v(t) converging to the asymptotic
BGP. Using that limt→∞ v(t)e−F (t) = 0 (since v converges to a constant and eF (t)

converges to zero), we obtain that

v (t) =

∫∞
t
e−F (s) (s) ds

e−F (t)
. (D.17)

In terms of the original variables, we can express this result as c and k being related
by a ray through the origin:

c(t) =
e−F (t)∫∞

t
e−F (s) (s) ds

k(t) ≡M(t)k(t), (D.18)

where we have simplified the notation from t to t. We can readily verify using
L’Hôpital’s rule that as t → ∞ the slope of this ray becomes constant and equal
to

lim
t→∞

M(t) =

{
0

0

}
= lim

t→∞

e−F (t)
(
−1−α

α
f (s) +

(
δ+ρ
α
− δ
))

e−F (t)
(D.19)

=
1− α
α

γx +
δ + ρ

α
− δ (D.20)

This last derivation proves Equation (20) in the main text. Also, note that Equation
(D.18) shows that, by construction, M(t) is a continuous function.
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Once we have the policy function (D.18), we can substitute it in the law of motion
for capital to obtain the solution path for capital. Imposing the boundary condi-
tion that it converges to the initial BGP as t → −∞ we then obtain the STraP.
Substituting the policy function in the law of motion for capital, we have that

k̇

k
= kα−1 −M (t)− δ − gx (t)

1− α
. (D.21)

Defining x = k1−α and noting that ẋ = (1− α) k−αk̇ we can rewrite the previous
expression as a Bernoulli equation:

ẋ = 1− α− (1− α)

[
M (t) +

gx (t)

1− α
+ δ

]
x. (D.22)

Using the integrating factor µ (t) = e(1−α)
∫ t
t [M(s)+

gx(s)
1−α +δ]ds, we have that

∂

∂t
[x (t)µ (t)] = (1− α)µ (t) , (D.23)

x (t)µ (t)− x (t)µ (t) = (1− α)

∫ t

t

µ (s) ds. (D.24)

Note that, by construction, µ(t) is continuous and increasing. Taking the limit as
t→ −∞ (and using that M(t) > 0 and gx(t) converges to a positive number while x
converges to a finite number given by the initial BGP), we find

x (t) = (1− α)

∫ t
−∞ µ (s) ds

µ (t)
, (D.25)

k (t) =

[
(1− α)

∫ t
−∞ µ (s) ds

µ (t)

] 1
1−α

. (D.26)

Equation (D.26) provides the general expression for the solution of the STraP path
for capital. Then, we can substitute back into the policy function (D.18) to obtain
the path of consumption.

Model dynamics given an initial condition for captial k0 To finalize the
proof, consider the problem of characterizing the competitive equilibrium given an
initial level of capital k0 at time t = 0. In this case, we can follow the steps of the
previous derivation and first characterize the path for z and then k going forward.
Indeed, Equations (D.18) and (D.24) still hold in this case. The only difference
relative to the previous derivation after (D.24) is that now the initial condition at
t = 0 is given, and we do not need to take the limit backwards to characterize the
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solution. Thus, we can use directly Equation (D.24) to characterize the solution,

x (t, x0) = x0
µ (t0)

µ (t)
+ (1− α)

∫ t
t0
µ (s) ds

µ (t)
, (D.27)

= x0
µ (t0)

µ (t)
+ (1− α)

∫ t
−∞ µ (s) ds−

∫ t0
−∞ µ (s) ds

µ (t)− µ (t0)

µ (t)− µ (t0)

µ (t)
, (D.28)

= x0
µ (t0)

µ (t)
+

[
x (t)

µ (t)

µ (t)− µ (t0)
− x (t0)

µ (t0)

µ (t)− µ (t0)

]
µ (t)− µ (t0)

µ (t)
.

Expressing this results in terms of the capital stock, we obtain

(t, k0) =

{
k1−α

0

µ (t0)

µ (t)
+

[
k (t)1−α µ (t)

µ (t)− µ (t0)
− k (t0)1−α µ (t0)

µ (t)− µ (t0)

]
µ (t)− µ (t0)

µ (t)

} 1
1−α

,

= k (t, k0) =

{[
k1−α

0 − k (t0)1−α] µ (t0)

µ (t)
+ k (t)1−α

} 1
1−α

. (D.29)

This last expression corresponds to the statement of the law of motion (18) stated in
Proposition A.1, completing the proof.

E Computing the STraP

Although Theorem 1 ensures that a unique STraP exists, an issue of practical rel-
evance is how to solve for the STraP. For its computation, we return to the more
specific model in Section 4 and move to discrete time. We maintain the same growth
notation, but we use the discrete analogs, e.g., Ax,t+1/Ax,t = 1 + γx,t, and the dis-
count rate, ρ, is replaced by the discount factor, β. The computational algorithm we
present is a double-recursive shooting algorithm. We recursively shoot both forwards
and backwards. Again, we normalize values by the effective investment productivity,
A1/(1−α)
x,t , and continue denoting normalized variables using lowercase letters. In an

inner loop, we shoot forward, solving for a time 0 value of consumption expenditures
that asymptotically leads to the services BGP. In an outer loop, we shoot backwards
and solve for a time 0 value of capital that asymptotically leads to the agriculture
BGP. In practice, it is quite difficult to shoot toward an asymptotic BGP, which
requires more precision at the initial value of consumption expenditure, c̃0, than is
computationally practical. Instead, we find a reasonably precise initial c̃0, but we
allow for small adjustments midpath that keep the overall path following the ideal
path with a high level of precision. A useful analogy is a hypothetical launch of a
rocket toward a planet in another solar system, where over time small deviations from
the ideal launch angle could compound and require small retro-rocket adjustments to
keep the rocket on target.
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To make our computation, we assign initial values for Ax,0 and Aj,0 for j = a,m, s,
and, for the sake of convenience, we now declare investment as the numeraire. Given
these, the steps of the algorithm are as follows:

1. Define initial bounds for k0. We solve for k0 using the bisection method,
which requires an upper and lower bound. Clearly, k̄∞ and k̄−∞ are candidate
upper and lower bounds, but one can use the fact that the relative price of
investment is increasing to bound it more tightly. One can solve for a pseudo-
BGP level of capital, which is the normalized level of capital that would result if
the effective productivities Ax,t and Ac,t grew at their initial rates perpetually:

kpseudoBGP =

 αβAx,0(
1 + Ax,1

Ax,0

)1+ αθ
(1−α)

(
1 + Ac,1

Ac,0

)θ/(1−α)

− β (1− δ)


1/(1−α)

A lower bound that is sufficiently low can then be chosen. In our simulations
we chose this as 0.9 ∗ kpseudoBGP .

2. Choose a trial value for k0. Using the bisection method, we choose the
midpoint of the two bounds.

3. Define initial bounds for c̃0. Again, we use the bisection method and choose
upper and lower bounds. Consumption expenditures are naturally bounded
between 0 and y0, but we choose tighter bounds: 1.2∗ c̃pseudoBGP and 10 percent
of initial output, 0.1 ∗ kα0 .

4. Choose a trial value for c̃0. We choose the midpoint between the upper and
lower bound.

5. Shoot forward toward k̄∞. In principle, we would consider it a successful
shot if we get sufficiently close to a stable value of capital close to the target,
i.e., kt within a tolerance of k̄∞ and kt+1/kt within a tolerance of one. In this
case, we would skip to the backward shooting in Step 7. However, in practice,
we also stop the shooting attempt at any point in which either c̃t+1 < c̃t or
kt+1 < kt. (Define this point of divergence as t∗.) If the former, assign the c̃0 as
the new lower bound; if the latter assign c̃0 as the new upper bound. Check if
the bounds on c̃0 are sufficiently tight. If not, return to Step 4.

6. Update t0 to shoot recursively. Regardless of the precision of c̃0, we have
found a point of divergence, t∗. Our recursive approach is to back up from this
point to some tn < t∗. Practically, we choose tn as the nearest period to 0.95∗t∗.
We then return to Step 3 at this new t0. (Note that one need not shoot forward
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until convergence to the asymptotic BGP, i.e., within a tolerance of k̄∞, but
one can stop shooting whenever the desired simulation period is finished.)

7. Shoot backward (i.e., t → −∞) from k0 and c̃0 toward k̄−∞. Here we
iterate backwards using the Euler equation and the laws of motion for capital
and technology. Again, we consider it a successful shot if we get sufficiently
close to a stable value of capital close to the target, i.e., kt within a tolerance
of k̄−∞ and kt/kt−1 within a tolerance of one. In this case, we are finished.
However, we also stop the shooting attempt if capital diverges too strongly at
any point. If capital becomes too large (we choose kt−1 > k̄∞), we update the
upper bound on k0. If capital gets too small (we choose kt−1 < 0.01), we update
the lower bound. We then return to Step 2.

The stopping procedure in the last step further illustrates the fact that capital is only
backwards stable along the STraP.

F Data Construction

The paper utilizes three sets of data, which we discuss in turn.

F.1 U.S. Data

These data are used to yield the calibrations in Sections 4 and 5.
We calibrate the aggregator weights, ωcj and ωxj, j = a,m, s, to match the time

series average shares of each sector in consumption and investment expenditure. We
use the input-output tables to yield the sectoral composition of consumption and
investment following closely the procedure described in Herrendorf et al. (2013). To
do this, we combined the Make and Use tables for the years 1947-2017 produced by
the Bureau of Economic Analysis (BEA) (U.S. Bureau of Economic Analysis, 2016,
2019b).5 The input-output information from individual sectors is aggregated into our
three broad aggregate sectors by simply adding the corresponding row and columns.6

To construct the TFP for our three broad sectors, we use data on the real output
of each sector, the value added of each sector, and the aggregate capital stock.

5The Make table refers to the table describing the make of Commodities by Industries, before
redefinitions, while the Use table refers to the table given the use of commodities by industries,
before redefinitions, using producers’ prices.

6In particular, we include agriculture, forestry, fishing, and hunting in the broad agriculture
sector; mining, utilities, construction, and manufacturing in the broad manufacturing sector; and
wholesale trade, retail trade, transportation and warehousing, information, finance, insurance, real
estate, rental, and leasing, professional and business services, educational services, health care, and
social assistance, arts, entertainment, recreation, accommodation, and food services, other services,
except government, and government into the broad service sector.
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The data on the real output of each sector is constructed from the Industry Eco-
nomic Accounts produced by the BEA (U.S. Bureau of Economic Analysis, 2017,
2019a). In particular, we use data on the value added VAlt and the chain-type price
indexes Plt, for disaggregated industries for the years 1947-2018. To do this combines
the historical GDP by Industry data for 1947-1997 with the more recent information
on the GDP by industry data for 1997-2018. We obtain quantity index for the broad
aggregate sectors that we use by aggregating the individual data using the Fisher
chain-weighted formula:

Qj,t =

[∑
l
Plt−1

Plt
VAlt∑

l VAlt−1

∑
l VAlt−1∑

l
Plt
Plt−1

VAlt−1

] 1
2

Qj,t−1.

The capital stock series Kt is calculated using the perpetual inventory method.
We start with the value of the current-cost net stock of private fixed assets in 1947 as
reported by the BEA (U.S. Bureau of Economic Analysis, 2018a), expressed in 2000
prices using the price index for private fixed investment (U.S. Bureau of Economic
Analysis, 2019c). To calculate the undepreciated capital we calibrate the depreciation
rate δ to match the average depreciation rate of private fixed assets over the period
1947-2017. The depreciation rate of private fixed assets is given by the ratio of
the current-cost depreciation of private fixed assets to the current-cost net stock
of private fixed assets (U.S. Bureau of Economic Analysis, 2018b). We add to the
undepreciated capital stock the gross domestic investment (U.S. Bureau of Economic
Analysis, 2018c), expressed in 2000 prices using the price index for private fixed
investment.

Given the data on the quantity index for an individual sector Qjt, the value added
share share of this sector, vajt = VAjt/

∑
j′ VAj′t, and the aggregate capital stock

Kt, the TFP of sector j, inclusive of the contribution of the changes in the aggregate
labor input, is given by:

Ajt =
Qjt

vajt ·Kα
t

.

The key assumption to obtain this expression is that the capital can be reallocated
without frictions across sectors and that all sectors have the same factor intensities
α.

The neutral TFP term affecting the investment aggregator Axt is calibrated using
data on the chain-type price indexes of sectoral value added Pjt and the Price Index
for Private fixed investment Pxt using the following expression:

Axt =

[ ∑
j=a,m,s

ωxj

(
Pjt
Pxt

)1−σx
] 1

1−σx

.

Finally, the discount factor is chosen so that the average return to capital in the
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model between 1950-2000 matches the after tax return to business capital calculated
by Gomme et al. (2011).

F.2 Penn World Tables 9.1

The Penn World Tables (PWT) data are used to yield calibration targets for Sec-
tion 4.5 and for data plotted in Figures 5-7. We detail the sample selection and
construction of variables here.

We select the sample based on two criteria. The first criterion is the level of accu-
racy of the capital stock. Since PWT uses a perpetual inventory method to construct
capital, the initial capital is simply assumed and can arbitrarily impact the series
during early years as explained in Inklaar et al. (2019). To eliminate this issue, we
obtained the additional file “pwt91 services.dta”, which contains detailed and disag-
gregate data on capital and capital services including indicators of the type of series,
and included only those series for which the initial capital stock could be constructed
from historical data (“t type”=“pim”, 38 countries) or those observations sufficiently
past the point where initial conditions influence capital stocks (“t type”=“t star”,
92 countries but shorter time series).7 The second criterion, as noted in the paper,
is the level of income because the set of countries thins out considerably as incomes
become either very high or very low. We therefore constrain the sample to country-
year observations with log real income per capita between 7 (roughly $1100 in 2011
USD) and 10.7464 (roughly $46,500), the U.S. income per capita in 2000. The sample
amounts to 126 countries, and 4191 country-year observations.

We plot five different variables in addition to log real income per capita.

• Real income per capita: In the model, the population and number of work-
ers are equal, and output and expenditures are also equal. In the real world,
however, these differ. Given the importance of nonhomotheticities, we focus on
real PPP expenditure income per capita as our measure of development, which
we calculate as “rgdpe”/“pop”.

• Capital-output ratio: Because we use panel variation, we construct the ratio
using current PPPs (in 2011 US$) as “cn”/“cgdp”.

• Investment rate: We compare this to the current-value investment rate in the
model (pxX/Y ), so we construct the analog in the data. The PWT report gross
capital formation as a share or real output (“cgdpo”), “csh i”, but they do at
PPPs rather than current-value shares. We therefore adjust to current value
shares using the PPP prices of investment (“pl i”) and output(“p gdpo”). The

7Our model simulations use chain-weighted growth measures. Although the capital-output ratios
are real, the timing of the initial value amounts to a critical choice of units. We follow the PWT
and use current-value capital-output ratio in 1950 (see (Inklaar et al., 2019), p.43), then using
chain-weighted growth in output to update values from that point.
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investment rate is thus calculated as “csh i”*“pl i”/“p gdpo”. This is identical
to the national accounts investment rate.

• Relative price of investment: We construct this using the PPP for invest-
ment (“pl i”) and consumption(“pl i”) as: “pl i”/“pl c”.

• Interest rate: The PWT 9.1 includes a measure of the internal rate or re-
turn, but this does not correspond to our consumption-based interest rate in
the model, and there is no simple adjustment that we can make. Instead, we
reconstruct the interest rate from scratch following the discrete model’s formula
for the interest rate in the Euler equation as given in footnote 11 of the paper:

(
C̃t+1

C̃t

)θ

= β (1 + rt) = β

[
1− δ +

Rt+1

Px,t+1

] [
Px,t+1/Pc,t+1

Px,t/Pc,t

]1−θ

.

This requires a depreciation rate, rental rate in units of the capital good, and the
growth of the relative price of investment. To back out the rental rate, we start
with the detailed disaggregate capital data in the file “pwt91 services.dta”.
We follow PWT and construct capital share (“capsh”) as one minus labor’s
share (“labsh”) and the share of rent to natural resources (“rntsh”). We then
multiply by national-accounts output (“rgdpna”)to get capital payments and
divide by the national-accounts capital stock (“rnna”) to get the rental rate in
units of final output. However, we require the rental rate in units of capital, so
we divide by the price of capital relative to output (“pl n/pl gdpo”).8 Hence,
the full formula for the rental rate is rentalrate = (1 − “labsh” − “rntsh”) ∗
“rgdpna”/“rnna”/(“pl n”/“pl gdpo”). Next, we need to calculate the growth
rate in the relative price of investment. The formula asks for an annual growth
rate, but Inklaar et al. (2019) note that these can vary strongly from year to
year, so the PWT averages over several years. We therefore follow the PWT in
this way and construct it average annual growth rate over q five-year window
in the following way

relativepricegrowth = (“pl n”t+2/“pl con”t+2/(“pl n”t−3/“pl con”t−3))(1/5)

where we have used t to index the year. Finally, using a depreciation of 0.04,
the calibrated depreciation rate in the analysis, we construct the interest rate as

r = (1− 0.04 + rentalrate) ∗ relativepricegrowth− 1.
8In the model, there is only a single type of investment good so the price of investment and the

price of the capital stock are identical. However, the PWT distinguishes between different types
of capital, and with a changing composition of investment, the two are distinct, i.e., “pl n” vs.
“pl i”. Equating the returns to investment across capital types, these differences in prices are offset
by different depreciation rates. Since our single depreciation rate is used to depreciate the overall
capital stock, the price of the overall capital stock is appropriate here. The difference between the
two is small, however.
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• 10-year real per worker growth: For growth rates, we utilize real variables
in the national accounts, “rgdpna”. Because this is a measure of growth in
productivity (rather than living standards), we focus on per worker growth
rather than per capita growth. Thus output per worker is “rgdpna”/“emp”.
Finally, growth rates are defined both in the model and data in the forward-
looking manner, i.e., the growth rate at time t is (yt+10/yt)

1/10 − 1. Given
the forward-looking nature of the variable, we have fewer observations for this
constructed variable.

F.3 Groningen Growth and Development Centre 10-Sector
Database

These data are used to for the results in Figure 9. We continue our definition of the
different sectors: Agriculture (includes Agriculture, forestry, and fishing), Industry
(includes Mining and quarrying; Manufacturing; Public utilities; and Construction)
and Services (Wholesale and retail trade, hotels and restaurants; Transport, storage,
and communication; Finance, insurance, real estate; Community, social and personal
services; and Government services). The raw data include 39 countries from 1950-
2010, but the value-added data series for some countries are considerably shorter.
Current-value shares are constructed by dividing sectoral value added by total value
added. Although these data include income and population data from the PWT,
the income data are output-side GDP (cgdpo) and from the PWT 8.0 version with
the benchmark year of 2005. To keep consistent, we replace these data with the
expenditure-side income (cgdpe) from the PWT 9.1, dividing by population (pop) to
yield per capita numbers. Once again, we focus on log real incomes per capita be-
tween 7 and 10.7464, the U.S. income per capita in 2000. We are left with 36 countries
and 1496 country-year observations. The countries are Argentina, Bolivia, Brazil,
Botswana, Chile, Colombia, Costa Rica, Denmark, France, Ghana, Hong Kong, In-
donesia, India, Italy, Japan, Kenya, Korea, Malawi, Malaysia, Mauritius, Nigeria,
Netherlands, Peru, Philippines, Senegal, Singapore, South Africa, Spain, Sweden,
Thailand, Taiwan, Tanzania, United States, Venezuela, and Zambia.
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