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This document contains additional theoretical results, proofs, and computational de-
tails for “Granular Origins of Agglomeration”. In Section 1, we spell out the details of
the quantitative model with granular firms in more detail, characterize the equilibrium,
and prove the main theoretical results. We present the proofs of the technical lemmas in
Section 2. And we provide the computational details in Section 3. Just as in the main text,
we will use x to denote the value of a variable x in the absence of any ex-post shocks and
x̂ to denote log deviations from the value.

1 Details of the Quantitative, Granular Model of Economic

Geography

In this section, we lay out the details of the quantitative model and prove that the
theoretical results continue to hold in this more general setting.

1.1 Environment

The country is made up of I regions, indexed by i ∈ I ≡ {1, . . . , I}. There is a mass ℓ of
workers and a continuum of sectors s ∈ [0, 1]. The sectors produce perfectly substitutable
goods but hire in distinct sectoral labor markets.

Timing. There are four periods t ∈ {−1, 0, 1, 2}. In period −1, workers decide where to
live and then stay there for the remaining periods, determining population ℓi. A mass mi

of firms pay a fixed cost of the traded final good in order to enter in period 0. Each firm
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is then randomly assigned a sector s and gets an ex-ante productivity draw z from some
known distribution.

After observing those initial productivity draws, a representative worker freely allo-
cates her labor Lisn across the sectors and firms in period 1. Then, in period 2, the state
of the world ω ∈ Ω is revealed. This determines the short-run productivity shocks to
each firm. The worker can then reallocate her labor across the firms and sectors subject to
moving costs. Firms then produce and sell their goods.

Workers. The fundamental utility of living in location i, ui is

ui = uici,

where ui is the local amenities and ci is consumption of the freely traded final good. Each
worker has an idiosyncratic preference for each location εi, so that the utility the worker
gets from living in location i is uiεi. We assume that εi are distributed Fréchet with shape
parameter θ > 0.

Once the worker has decided on a location i, she needs to make her labor supply
decisions. She is a risk-neutral representative agent, endowed with one unit of labor that
she supplies to the market inelastically. In period 1, the worker freely allocates her units
of labor across sectors and firms. In particular, she chooses her vector of labor supply
Li ≡ {Lisn}s,n in the set of feasible labor allocations L,

Li ∈ L ≡
{
L′

i|
∫ 1

0
∑

n∈Nis

L′
isnds ≤ 1

}
.

In period 2, the state of the world ω is revealed. This determines the ex-post produc-
tivity shocks for all firms. The worker then reallocates her labor across firms, choosing a
vector of labor supply Li(ω) ≡ {Lisn(ω)}s,n in the set of feasible labor allocations LΩ(Li)

which depends on the worker’s labor choices in period 1. The set is given by

LΩ(Li) ≡
{
Li(ω)|1 =

(∫ 1

0
L− 1

ν
is Lis(ω)

1+ν
ν ds

) ν
1+ν

,

Lis(ω) =

(
∑

n∈Nis

(
Lisn

Lis

)− 1
κ

Lisn(ω)
1+κ

κ

) κ
1+κ }

,

where Lis = ∑n∈Nis
Lisn.
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Firms. There is a continuum of potential firm entrants. To enter, a firm must pay a fixed
cost ψi > 0 in terms of the freely traded final good in period 0. Those firms are then
randomly assigned a sector. We denote by Nis the set of firms operating in region i sector
s and Nis ≡ |Nis| the (finite) number of firms. We assume that firms enter according to
the “ball-and-urn model” so that Nis is distributed Poisson with mean mi. That is, the
probability mass function for the number of firms in a sector is mN

i e−mi /N!.
Firm n in sector s then gets an ex-ante productivity draw zisn from a distribution Fiz(·)

which we assume is continuous and regularly varying.1 We further assume that the ex-
pected HHI of a sector is decreasing and convex in the number of firms when weighted
by the average productivity of those firms.2 This assumption rules out certain distribu-
tions for Fiz that imply HHI increases with more firms on average. This could happen if
there is some probability that a new firm would dominate the market, as it is so much
more productive than the other firms.

In period 2, each firm n gets an idiosyncratic productivity shock to firm n, ãisn(ω), a
sector-wide productivity shock, Ãis(ω), and produces a final good, yisn(ω), according to,

yisn(ω) = zisnaisn(ω)ℓisn(ω)1−η,

where aisn(ω) ≡ ãisn(ω)Ãis(ω) is the total productivity shock to firm n, ℓisn(ω) is the total
amount of labor firm n hires, and η ∈ (0, 1).

We assume that log ãisn(ω) are iid with mean zero and a finite second moment σ2
N.

Similarly, log Ãis(ω) are iid with mean zero and a finite second moment σ2
S. We further

assume that the idiosyncratic and sector-wide shocks are independent of each other.

Market Clearing. Total expected production in location i is still

Yi = E

[∫ 1

0
∑

n∈Nis

zisnaisn(ω)ℓisn(ω)1−ηds

]
.

The final goods are freely traded, so the market clearing condition holds at the national
level,

∑
i∈I

ciℓi + ψimi = ∑
i∈I

Yi. (1)

1Formally, L : (0, ∞) → (0, ∞) is regularly varying if limx→∞
L(ax)
L(x) ∈ R+ for all a > 0. In the main text,

we will assume the ex-ante distribution is Pareto, which satisfies this condition.

2Formally, we assume that E

[
∑n′∈N z1/η

isn′
N

∑n′∈N

(
z1/η

isn′
)2

(
∑n′∈N z1/η

isn′
)2

∣∣∣∣N
]

is decreasing in N and convex for sufficiently

large N where η is defined below.
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In the labor market, labor demanded needs to equal the individual labor supplied by
each worker multiplied by the number of workers. However, this needs to hold for each
individual firm as labor is imperfectly substitutable across firms,

ℓisn(ω) = Lisn(ω)ℓi, ∀s, n, ω. (2)

1.2 Market Structure and Equilibrium

Labor Supply Decison. We will characterize the worker’s decision using backward in-
duction, starting with the labor supply decision in periods 1 and 2, and then characteriz-
ing the migration decision in period −1 in the next section.

Conditional on living in location i, workers choose their labor allocation across firms
and sectors in periods 1 and 2 to maximize their expected utility, taking wages as given.
We normalize the price of the final goods to 1, so workers solve the problem,

Li,Li(ω) ∈ argmax
L′
i∈L,L′

i(ω)∈LΩ(L′
i)

E

[∫ 1

0
∑

n∈Nis

wisn(ω)L′
isn(ω)ds

]
, (3)

where wisn(ω) is the equilibrium wage for firm n in sector s in state of the world ω. We
will denote the maximum of (3) by wi.

Writing out the maximization problem, we get

max
L′
i,L′

i(ω)
E

[∫ 1

0
∑

n∈Nis

wisn(ω)L′
isn(ω)ds

]

such that

Lis = ∑
n∈Nis

Lisn (λis)

1 =
∫ 1

0
Lisds (λi)

Lis(ω)
1+κ

κ = ∑
n∈Nis

(
Lisn

Lis

)− 1
κ

Lisn(ω)
1+κ

κ (λis(ω))

1 =
∫ 1

0
(Lis)

− 1
ν Lis(ω)

1+ν
ν ds. (λi(ω))

Taking the first order conditions, we find that
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wisn(ω) = λis(ω)

(
Lisn

Lis

)− 1
κ 1 + κ

κ
Lisn(ω)

1
κ

λis(ω) = λi(ω) (Lis)
− 1

ν
κ

1 + κ

1 + ν

ν
Lis(ω)

1
ν−

1
κ

λis = E

[
λis(ω)

1
κ

(
Lisn

Lis

)− 1
κ

L−1
isn Lisn(ω)

1+κ
κ

]

λi = λis + E

[
λi(ω)

1
ν
(Lis)

− 1
ν L−1

is Lis(ω)
1+ν

ν

]
− 1

κ
L−1

is E
[
λis(ω)Lis(ω)

1+κ
κ

]
. (4)

One can rewrite the short run labor supply decision in the more familiar form

Lisn(ω)

Lisn
=

(
wisn(ω)

wis(ω)

)κ Lis(ω)

Lis
,

Lis(ω)

Lis
=

(
wis(ω)

wi(ω)

)ν

,

where

wis(ω) ≡
(

∑
n∈Nis

Lisn

Lis
wisn(ω)1+κ

) 1
1+κ

, wi(ω) ≡
(∫ 1

0
Liswis(ω)1+νds

) 1
1+ν

.

Migration Decision. Each worker chooses the location that maximizes their utility. There-
fore, population in location i satisfies

ℓi =
∫

RI
1i∈argmaxi′ ui′wi′

dG(ε) · ℓ, (5)

where G is the joint distribution of ε. This is a standard problem in the literature with a
Fréchet distribution. It implies that ℓi = (ui/u)θ · ℓ, where u = (∑i(ui)

θ)
1
θ .

Labor Demand - Competitive. We will consider three different conduct assumptions on
firms after they enter. The first assumption is that they are competitive. Then each active
firm maximizes profits, taking wages and prices as given,

ℓisn(ω) ∈ argmax
ℓ′

zisnaisn(ω)(ℓ′)1−η − wisn(ω)ℓ′. (6)

This implies that
zisnaisn(ω)ℓisn(ω)−η = wisn(ω). (7)
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Labor Demand - Cournot. Under Cournot competition, the firm takes as given the labor
decisions of the other firms in its own sector. We assume that the firm then takes as given
the workers’ other options in other sectors. In the math, that will imply that the firm will
take λi(ω) and λi in equation (4) as given. Combining some of the first-order necessary
conditions of the worker’s problem, we can write the firm problem as,

wisn(ω),∈ argmax
w′

isn(ω),ℓ′isn(ω),ℓ′isn,ℓ′is(ω),ℓ′is

E
[
zisnaisn(ω)ℓ′isn(ω)1−η − w′

isn(ω)ℓ′isn(ω)
]

ℓisn(ω), ℓisn, s.t. (ℓ′is)
− 1

κ ℓ′is(ω)
1+κ

κ =
(
ℓ′isn
)− 1

κ ℓ′isn(ω)
1+κ

κ + ∑
n′ ̸=n

(ℓisn′)−
1
κ ℓisn′(ω)

1+κ
κ

ℓis(ω), ℓis ℓ′is = ℓ′isn + ∑
n′ ̸=n

ℓisn′

w′
isn(ω) = λi(ω)

1 + ν

ν

(
ℓis(ω)

ℓis

) 1
ν−

1
κ
(
ℓisn(ω)

ℓisn

) 1
κ

λi(1 + κ)ν = E

[
λi(ω)(1 + ν)

(
ℓis(ω)

ℓis

) 1
ν−

1
κ
(
ℓisn(ω)

ℓisn

) 1+κ
κ

]

+ E

[
λi(ω)(κ − ν)

(
ℓis(ω)

ℓis

) 1+ν
ν

]
, (8)

where we have transformed the per capita variables to total amount of labor.
Taking the first order conditions and simplifying gives the following necessary condi-

tions,

(1 − η)E
[
zisnaisn(ω)ℓisn(ω)1−η

]
= E[wisn(ω)ℓisn(ω)]− ℓisnE

[
Λisn(ω)

((
ℓisn(ω)

ℓisn

) 1+κ
κ

−
(
ℓis(ω)

ℓis

) 1+κ
κ

)]

(1 − η)zisnaisn(ω)ℓisn(ω)1−η =
1 + κ

κ
wisn(ω)ℓisn(ω)− 1 + κ

κ
Λisn(ω)ℓisn(ω)

(
ℓisn(ω)

ℓisn

) 1
κ

−
Λw

isn
λi(ω)

1 + κ

κ
νwisn(ω)

ℓisn(ω)

ℓisn

Λisn(ω)ℓis
1 + κ

κ

(
ℓis(ω)

ℓis

) 1+κ
κ

= −
(

1
ν
− 1

κ

) [
wisn(ω)ℓisn(ω)−

Λw
isn

λi(ω)
νwisn(ω)

ℓisn(ω)

ℓisn

− κ(1 + ν)Λw
isn

(
ℓis(ω)

ℓis

) 1+ν
ν
]

(9)

Labor Demand - Bertrand. Under Bertrand competition, the firm takes as given the
wage decisions of the other firms in its own sector. Just as before, we assume that the firm
takes as given the workers’ other options in other sectors. Then we can write the firm
problem as,
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wisn(ω), wis(ω) ∈ argmax
w′

isn(ω),w′
is(ω),ℓ′isn(ω),ℓ′isn,ℓ′is

E
[
zisnaisn(ω)ℓ′isn(ω)1−η − w′

isn(ω)ℓ′isn(ω)
]

ℓisn(ω), ℓisn, s.t. ℓisw′
is(ω)1+κ = ℓ′isnw′

isn(ω)1+κ + ∑
n′ ̸=n

ℓisn′wisn′(ω)1+κ

ℓis ℓ′is = ℓ′isn + ∑
n′ ̸=n

ℓisn′

ℓ′isn(ω)

ℓ′isn
=

(
ν

1 + ν

)ν

λi(ω)−νw′
is(ω)ν−κw′

isn(ω)κ

λi =
1

1 + κ

(
ν

1 + ν

)ν

E
[
λi(ω)w′

is(ω)ν−κw′
isn(ω)1+κ

]
+

κ

1 + κ

(
1
ν
− 1

κ

)(
ν

1 + ν

)1+ν

E
[
λi(ω)w′

is(ω)1+ν
]

.

(10)

Taking the first order conditions and simplifying gives the following necessary condi-
tions,

E [(1 − η)zisnaisn(ω)ℓisn(ω)] = E[wisn(ω)ℓisn(ω)]

− ℓisnE
[
Λisn(ω)

(
wisn(ω)1+κ − wis(ω)1+κ

)]
(1 − η)zisnaisn(ω)ℓisn(ω) =

1 + κ

κ
wisn(ω)ℓisn(ω)− 1 + κ

κ
Λisn(ω)ℓisnwisn(ω)1+κ

−
Λw

isn
κ

λi(ω)−ν

(
ν

1 + ν

)ν

wis(ω)ν−κwisn(ω)1+κ

1 + κ

κ
Λisn(ω)

(
κℓiswis(ω)1+κ+

(ν − κ)ℓisnwisn(ω)1+κ

)
=

ν − κ

κ
wisn(ω)ℓisn(ω)

+
1

1 + κ
Λw

isnλ(ω)−ν

(
ν

1 + ν

)ν κ − ν

κ
wis(ω)ν−κwisn(ω)1+κ

+ Λw
isnλi(ω)−ν κ − ν

1 + κ

(
ν

1 + ν

)ν

wis(ω)1+ν (11)

Entry. Entry is the same as in the baseline model. Thus, free entry implies that average
profits are equal to the cost of entry

ψi =
E
[∫ 1

0 ∑n∈Nis
πisn(ω)ds

]
mi

. (12)
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1.3 Theoretical Results for the Competitive Case

In this section, we prove the propositions of the main text in the more general case
with κ, ν ∈ (0, ∞).

Proposition 1. In any stable equilibrium, the average wage is increasing in the number of work-
ers, i.e. d log wi

d log ℓi
> 0, if and only if the employment weighted covariance between log firm produc-

tivity and log firm employment is increasing in m, i.e. ∂ log Φ(m)
∂ log m

∣∣
m=mi

> 0.

Proof. The proof exactly follows the argument in the main text so we do not reporduce it
here.

Proposition 2. If idiosyncratic shocks have a positive variance, σ2
N > 0, and labor is more substi-

tutable across firms within a sector than across sectors, κ > ν, the average wage is increasing in
the number of workers, i.e. d log wi

d log ℓi
> 0. Furthermore, the agglomeration benefits converge to zero

as the size of the market goes to infinity, i.e. d log wi
d log ℓi

→ 0 as mi → ∞.

Proof. Taking a log first order approximation to the labor supply FOCs (4) after substitut-
ing out λis(ω) and λis implies,

ŵisn(ω) = λ̂(ω) +

(
1
ν
− 1

κ

)(
ℓ̂is(ω)− ℓ̂is

)
+

1
κ

(
ℓ̂isn(ω)− ℓ̂is

)
λ̂i =

1 + ν

1 + κ
E [ŵisn(ω)] +

κ − ν

1 + κ
E
[
λ̂(ω)

]
+

κ

1 + κ

1 + ν

ν
E
[
ℓ̂isn(ω)− ℓ̂isn

]
,

where we use the fact that L̂isn(ω) = ℓ̂isn(ω).
Taking a log first order approximation to the labor constraints embedded in L and

LΩ(·) implies,

ℓ̂is(ω) = ∑
n∈Nis

ℓisn

ℓis
ℓ̂isn(ω), 0 =

∫ 1

0

ℓis

ℓi
ℓ̂is(ω)ds,

ℓ̂is = ∑
n∈Nis

ℓisn

ℓis
ℓ̂isn, 0 =

∫ 1

0

ℓis

ℓi
ℓ̂isds.

And the labor demand curve implies that âisn(ω)− ηℓ̂isn(ω) = ŵisn(ω). First note that
taking expectations E[âisn(ω)]− ηE[ℓ̂isn(ω)] = E[ŵisn(ω)] which implies E[ŵisn(ω)] =

−ηE[ℓ̂isn(ω)]. Therefore,

−λ̂i(ω) =

(
1
ν
− 1

κ

)(
ℓ̂is(ω)− ℓ̂is

)
+

1
κ

(
ℓ̂isn(ω)− ℓ̂is

)
+ ηℓ̂isn(ω)
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−
∫ 1

0

ℓis

ℓi
∑

n∈Nis

ℓisn

ℓis
λ̂(ω)ds =

(
1
ν
− 1

κ

) ∫ 1

0

ℓis

ℓi

(
ℓ̂is(ω)− ℓ̂is

)
ds

+
∫ 1

0

ℓis

ℓi
∑

n∈Nis

ℓisn

ℓis

(
1
κ

(
ℓ̂isn(ω)− ℓ̂is

)
+ ηℓ̂isn(ω)

)
ds

λ̂(ω) = 0.

Then

λ̂i =
1 + ν

1 + κ
E [ŵisn(ω)] +

κ − ν

1 + κ
E
[
λ̂(ω)

]
+

κ

1 + κ

1 + ν

ν
E
[
ℓ̂isn(ω)− ℓ̂isn

]
λ̂i =

1 + ν

1 + κ

(κ

ν
− η

)
E
[
ℓ̂isn(ω)

]
− κ

1 + κ

1 + ν

ν
ℓ̂isn.

Again taking a weighted sum across all firms implies that λ̂i = 0. Since κ/ν > 1 and
η ∈ (0, 1), it then follows that ℓ̂isn = E[ℓ̂isn(ω)] = E[ŵisn(ω)] = 0 because otherwise it is
not possible for 0 =

(
κ
ν − η

)
E
[
ℓ̂isn(ω)

]
− κ

ν ℓ̂isn and the labor constraints to hold.
Therefore, we can solve for sectoral labor

âisn(ω)− ηℓ̂isn(ω) =

(
1
ν
− 1

κ

)
ℓ̂is(ω) +

1
κ
ℓ̂isn(ω)

∑
n∈Nis

ℓisn

ℓis
âisn(ω) =

(
1
ν
− 1

κ

)
ℓ̂is(ω) +

(
1
κ
+ η

)
ℓ̂is(ω)

1
η + 1

ν
∑

n∈Nis

ℓisn

ℓis
âisn(ω) = ℓ̂is(ω).

And individual firm labor is

ℓ̂isn(ω) =
1

η + 1
κ

(
âisn(ω)−

1
ν −

1
κ

η + 1
ν

∑
n′∈Nis

ℓisn′

ℓis
âisn′(ω)

)
.

Therefore,

E[âisn(ω)ℓ̂isn(ω)] = E

[
âisn(ω)

1
η + 1

κ

(
âisn(ω)−

1
ν −

1
κ

η + 1
ν

∑
n′∈Nis

ℓisn′

ℓis
âisn′(ω)

)]

=
1

η + 1
κ

(
σ2

S + σ2
N

)
−

1
ν −

1
κ(

η + 1
κ

) (
η + 1

ν

) (ℓisn

ℓis
σ2

N + σ2
S

)

=
1

η + 1
ν

σ2
S +

η + 1
ν −

(
1
ν −

1
κ

)
ℓisn
ℓis(

η + 1
κ

) (
η + 1

ν

) σ2
N.
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Then we can calculate Φ(m),

Φ(m) = E[aisn(ω)] +
1 − η

2

∫ 1

0

ℓis

ℓi
∑

n∈Nis

ℓisn

ℓis
E
[

âisn(ω)ℓ̂isn(ω)
]

= E[aisn(ω)] +
1 − η

2
1

η + 1
ν

σ2
S +

1 − η

2

η + 1
ν −

(
1
ν −

1
κ

) ∫ 1
0

ℓis
ℓi

∑n∈Nis

(
ℓisn
ℓis

)2
ds(

η + 1
κ

) (
η + 1

ν

) σ2
N.

Therefore,

∂ log Φ(m)

∂ log m
= −1 − η

2

1
ν −

1
κ(

η + 1
κ

) (
η + 1

ν

) ∂

∂ log m

∫ 1

0

ℓis

ℓi
∑

n∈Nis

(
ℓisn

ℓis

)2

ds

 σ2
N

Φ(m)

By Lemma 5, ∂
∂ log m

[∫ 1
0

ℓis
ℓi

∑n∈Nis

(
ℓisn
ℓis

)2
ds
]
< 0. Then by Proposition 1, the first result

will follow. Similarly, by Lemma 5, ∂
∂ log m

[∫ 1
0

ℓis
ℓi

∑n∈Nis

(
ℓisn
ℓis

)2
ds
]
→ 0 as m → ∞ so

d log wi

d log ℓi
=

1
1−η

∂ log Φ(mi)
∂ log mi

1 − 1
1−η

∂ log Φ(mi)
∂ log mi

→ 0,

as m → ∞.

Proposition 3. If idiosyncratic shocks have a positive variance, σ2
N > 0, the optimal policy fea-

tures a subsidy on firm entry proportional to firm profits given by τi =
1
η

∂ log Φ(m)
∂ log m

∣∣
m=mi

. Further-
more, the optimal subsidy converges to zero as the size of the market goes to infinity, i.e. τi → 0 as
mi → ∞.

Proof. The proof exactly follows the argument in the main text so we do not reproduce it
here.

1.4 Characterizing Imperfect Competition

In this subsection, we characterize the equilibrium under Cournot and Bertrand Com-
petition. In both cases, the expression for production given in Lemma 6 holds no matter
how firms behave. Therefore, we go through and characterize what total wage payments
are which then implies profits.

Taking a second order approximation to total wage payments and the firm FOCs as-
sociated with Cournot competition implies the next proposition.
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Proposition 4. If firms compete a lá Cournot, total wage compensation in location i can be writ-
ten,

wiℓi = (1 − η)zi(mi)
η(ℓi)

1−η
(
Φ̃(m) + Ψc(m)

)
,

where Φ̃(m) is defined as in Lemma 6 and

Ψc(m) ≡ 1 + κ

κ

∫
S

ℓis

ℓi
∑
n

ℓisn

ℓis
E

[
Λ̂isn(ω)

wi

(
ℓ̂isn(ω)− ℓ̂isn − ℓ̂is(ω) + ℓ̂is

)]
ds.

Proof. First we note that because workers are freely mobile across all sectors in period
1, the equilibrium with no ex-post shocks and Cournot competition is the same as the
equilibrium with no ex-post shocks and competitive firms. Doing a second order approx-
imation around the point with no ex-post shocks implies

E

[∫ 1

0
∑

n∈Nis

wisn(ω)ℓisn(ω)

]

= wiℓi

( ∫ 1

0
∑

n∈Nis

ℓisn

ℓi

(
1 + E[ŵisn(ω)] + E[ℓ̂isn(ω)] +

1
2

E[(ŵisn(ω) + ℓ̂isn(ω))2]

))

We then take a log second order approximation to the firm FOCs in equation (9). How-
ever, with no shocks Λisn(ω) = 0, so we leave that in levels. The first equation becomes

E[âisn(ω)] + (1 − η)E[ℓ̂isn(ω)] +
1
2

E
[
(âisn(ω) + (1 − η)ℓ̂isn(ω))2

]
= E[ŵisn(ω)] + E[ℓ̂isn(ω)] +

1
2

E
[
(ŵisn(ω) + ℓ̂isn)

2
]

− 1 + κ

κ
E

[
Λ̂isn(ω)

wi

(
ℓ̂isn(ω)− ℓ̂isn − ℓ̂is(ω) + ℓ̂is

)]
.

We also need the second order approximation to the labor constraints embedded in L and
LΩ(·),

ℓ̂is(ω)+
1
2

κ

1 + κ

(
−1

κ
ℓ̂is +

1 + κ

κ
ℓ̂is(ω)

)2

+
1

1 + κ
ℓ̂2

is

= ∑
n∈Nis

ℓisn

ℓis

(
ℓ̂isn(ω) +

1
2

κ

1 + κ

(
−1

κ
ℓ̂isn +

1 + κ

κ
ℓ̂isn(ω)

)2

+
1

1 + κ
ℓ̂2

isn

)

11



0 =
∫ 1

0
ℓis

(
ℓ̂is(ω) +

1
2

ν

1 + ν

(
−1

ν
ℓ̂is +

1 + ν

ν
ℓ̂is(ω)

)2

+
1

1 + ν
ℓ̂2

is

)
.

So then we can write

∫ 1

0

ℓis

ℓi
∑

n∈Nis

ℓisn

ℓis

(
E [ŵisn(ω)] + E

[
ℓ̂isn(ω)

]
+

1
2

E[(ŵisn(ω) + ℓ̂isn(ω))2]

)
ds

=
1
2

∫ 1

0

ℓis

ℓi
∑

n∈Nis

ℓisn

ℓis
E
[
(âisn(ω) + (1 − η)ℓ̂isn(ω))2

]
ds

+
1 + κ

κ

∫ 1

0

ℓis

ℓi
∑

n∈Nis

ℓisn

ℓis
E

[
Λ̂isn(ω)

wi

(
ℓ̂isn(ω)− ℓ̂isn − ℓ̂is(ω) + ℓ̂is

)]
ds

+
∫ 1

0

ℓis

ℓi
∑

n∈Nis

ℓisn

ℓis

(
E[âisn(ω)] + (1 − η)E[ℓ̂isn(ω)]

)
ds

= E[âisn(ω)] +
1
2

E[âisn(ω)2]

+ (1 − η)
∫ 1

0

ℓis

ℓi
∑

n∈Nis

ℓisn

ℓis
E[âisn(ω)ℓ̂isn(ω)]ds

− η
1 − η

2

∫ 1

0

ℓis

ℓ ∑
n∈Nis

ℓisn

ℓis
E[ℓ̂isn(ω)2]ds

− 1
κ

1 − η

2

∫ 1

0

ℓs

ℓ ∑
n∈Ns

ℓisn

ℓis
E

[(
ℓ̂sn(ω)− ℓ̂isn

)2
]

ds

−
(

1
ν
− 1

κ

)
1 − η

2

∫ 1

0

ℓis

ℓ
E

[(
ℓ̂is(ω)− ℓ̂is

)2
]

ds

+
1 + κ

κ

∫ 1

0

ℓis

ℓi
∑

n∈Nis

ℓisn

ℓis
E

[
Λ̂isn(ω)

wi

(
ℓ̂isn(ω)− ℓ̂isn − ℓ̂is(ω) + ℓ̂is

)]
ds.

This completes the proof.

Then we can do the same thing when firms are behaving Bertrand.

Proposition 5. If firms compete a lá Bertrand, total wage compensation in location i can be
written,

wiℓi = (1 − η)zi(mi)
η(ℓi)

1−η
(

Φ̃(m) + Ψb(m)
)

,

where Φ̃(m) is defined as in Lemma 6 and

Ψb(m) ≡ (1 + κ) (wi)
κ
∫
S

ℓis

ℓi
∑
n

ℓisn

ℓis
E
[
Λ̂isn(ω) (ŵisn(ω)− ŵis(ω))

]
ds.
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Proof. First we note that because workers are freely mobile across all sectors in period
1, the equilibrium with no ex-post shocks and Cournot competition is the same as the
equilibrium with no ex-post shocks and competitive firms. Doing a second order approx-
imation around the point with no ex-post shocks implies

E

[∫ 1

0
∑

n∈Nis

wisn(ω)ℓisn(ω)

]

= wiℓi

( ∫ 1

0
∑

n∈Nis

ℓisn

ℓi

(
1 + E[ŵisn(ω)] + E[ℓ̂isn(ω)] +

1
2

E[(ŵisn(ω) + ℓ̂isn(ω))2]

))

We then take a to the firm FOCs in equation (11). However, with no shocks Λisn(ω) =

0, so we leave that in levels. The first equation becomes,

E[âisn(ω)] + (1 − η)E[ℓ̂isn(ω)] +
1
2

E
[
(âisn(ω) + (1 − η)ℓ̂isn(ω))2

]
= E[ŵisn(ω)] + E[ℓ̂isn(ω)] +

1
2

E
[
(ŵisn(ω) + ℓ̂isn)

2
]

− (1 + κ) (wi)
κ

E
[
Λ̂isn(ω) (ŵisn(ω)− ŵis(ω))

]
.

We also need the second order approximation to the labor constraints embedded in L and
LΩ(·),

ℓ̂is(ω)+
1
2

κ

1 + κ

(
−1

κ
ℓ̂is +

1 + κ

κ
ℓ̂is(ω)

)2

+
1

1 + κ
ℓ̂2

is

= ∑
n∈Nis

ℓisn

ℓis

(
ℓ̂isn(ω) +

1
2

κ

1 + κ

(
−1

κ
ℓ̂isn +

1 + κ

κ
ℓ̂isn(ω)

)2

+
1

1 + κ
ℓ̂2

isn

)

0 =
∫ 1

0
ℓis

(
ℓ̂is(ω) +

1
2

ν

1 + ν

(
−1

ν
ℓ̂is +

1 + ν

ν
ℓ̂is(ω)

)2

+
1

1 + ν
ℓ̂2

is

)
.

So then we can write

∫ 1

0

ℓis

ℓi
∑

n∈Nis

ℓisn

ℓis

(
E [ŵisn + (ω)] + E

[
ℓ̂isn(ω)

]
+

1
2

E[(ŵisn(ω) + ℓ̂isn(ω))2]

)
ds

=
1
2

∫ 1

0

ℓis

ℓi
∑

n∈Nis

ℓisn

ℓis
E
[
(âisn(ω) + (1 − η)ℓ̂isn(ω))2

]
ds

+ (1 + κ) (wi)
κ
∫
S

ℓis

ℓi
∑
n

ℓisn

ℓis
E
[
Λ̂isn(ω) (ŵisn(ω)− ŵis(ω))

]
ds

13



+
∫ 1

0

ℓis

ℓi
∑

n∈Nis

ℓisn

ℓis

(
E[âisn(ω)] + (1 − η)E[ℓ̂isn(ω)]

)
ds

= E[âisn(ω)] +
1
2

E[âisn(ω)2]

+ (1 − η)
∫ 1

0

ℓis

ℓi
∑

n∈Nis

ℓisn

ℓis
E[âisn(ω)ℓ̂isn(ω)]ds

− η
1 − η

2

∫ 1

0

ℓis

ℓ ∑
n∈Nis

ℓisn

ℓis
E[ℓ̂isn(ω)2]ds

− 1
κ

1 − η

2

∫ 1

0

ℓs

ℓ ∑
n∈Ns

ℓisn

ℓis
E

[(
ℓ̂sn(ω)− ℓ̂isn

)2
]

ds

−
(

1
ν
− 1

κ

)
1 − η

2

∫ 1

0

ℓis

ℓ
E

[(
ℓ̂is(ω)− ℓ̂is

)2
]

ds

+ (1 + κ) (wi)
κ
∫
S

ℓis

ℓi
∑
n

ℓisn

ℓis
E
[
Λ̂isn(ω) (ŵisn(ω)− ŵis(ω))

]
ds.

This completes the proof.

Proposition 4 and Proposition 5 gives wages completely in second order terms for
Cournot competition and Bertrand competition, respectively. Therefore, following Be-
nigno and Woodford (2003) and Benigno and Woodford (2012), we can then approximate
the labor constraints and firm first order conditions with a log first order approximation.
We then computationally evaluate Φ̃(m) and Ψ(m) for these two different cases and use
those functions in calculating the equilibrium.

2 Proofs of Technical Lemmas

In this section, we prove the Technical Lemmas used in the main text and Section 1 for
the more general case with κ, ν ∈ (0, ∞). To get the results for the results in the main text,
one simply needs to take the limit as κ → ∞ and ν → 0.

Lemma 1. If firms are competitive conditional on entry, the regional production function is
Yi(ℓ, m) = zimηℓ1−ηΦ(m), where zi ≡ E[z1/η

isn ]η and Φ(m) is given by,

Φ(m) ≡ E[asn(ω)] +
1 − η

2

∫ 1

0

ℓs

ℓ ∑
n∈Ns

ℓsn

ℓs
Cov (log asn(ω), log ℓsn(ω)) ds. (13)

Proof. By Lemma 6, the regional production can be written Yi(ℓ, m) = zimηℓ1−ηΦ̃(m)

14



where

Φ̃(m) ≡ E[asn(ω)] + (1 − η)
∫ 1

0

ℓs

ℓ ∑
n∈Ns

ℓsn

ℓs
E[âsn(ω)ℓ̂sn(ω)]ds

− η
1 − η

2

∫ 1

0

ℓs

ℓ ∑
n∈Ns

ℓsn

ℓs
E[ℓ̂sn(ω)2]ds

− 1
κ

1 − η

2

∫ 1

0

ℓs

ℓ ∑
n∈Ns

ℓsn

ℓs
E

[(
ℓ̂sn(ω)− ℓ̂sn

)2
]

ds

−
(

1
ν
− 1

κ

)
1 − η

2

∫ 1

0

ℓs

ℓ
E

[(
ℓ̂s(ω)− ℓ̂s

)2
]

ds

Therefore, the planner is looking to maximize this second order production function
subject to the labor constraints. Following Benigno and Woodford (2003) and Benigno and
Woodford (2012), we can do a linear approximation to the labor constraints, embedded in
the sets L and LΩ(·),

ℓ̂is(ω) = ∑
n∈Nis

ℓisn

ℓis
ℓ̂isn(ω), 0 =

∫ 1

0

ℓis

ℓi
ℓ̂is(ω)ds,

ℓ̂is = ∑
n∈Nis

ℓisn

ℓis
ℓ̂isn, 0 =

∫ 1

0

ℓis

ℓi
ℓ̂isds.

To simplify the explication, we rewrite the maximization problem with vector notation
as

max
x

ax − 1
2

x′bx

such that
cx = 0,

where x is the vector of labor supply decisions, a is the vector of productivity shocks so
that

ax = (1 − η)
∫ 1

0

ℓs

ℓ ∑
n∈Ns

ℓsn

ℓs
E[âsn(ω)ℓ̂sn(ω)]ds,

b is the self adjoint operator (i.e. symmetric matrix) representing the loss function so that

x′bx = η(1 − η)
∫ 1

0

ℓs

ℓ ∑
n∈Ns

ℓsn

ℓs
E[ℓ̂sn(ω)2]ds

+
1
κ
(1 − η)

∫ 1

0

ℓs

ℓ ∑
n∈Ns

ℓsn

ℓs
E

[(
ℓ̂sn(ω)− ℓ̂sn

)2
]

ds
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+

(
1
ν
− 1

κ

)
(1 − η)

∫ 1

0

ℓs

ℓ
E

[(
ℓ̂s(ω)− ℓ̂s

)2
]

ds,

and c is the matrix representing the linear constraints. Forming the lagrangian we have

ax − 1
2

x′bx − λcx.

Taking the FOCs we get
a − (bx)′ − λc = 0.

Therefore, x = b−1(a − λc)′ = b−1(a′ − c′λ′). Using the constraint, we can solve for λ:

0 = cx

= cb−1(a′ − c′λ′)

λ′ = (cb−1c′)−1cb−1a′.

Then to complete the proof, we will show that ax = x′bx.

x′bx =
(

b−1(a′ − c′(cb−1c′)−1cb−1a′)
)′

bb−1(a′ − c′(cb−1c′)−1cb−1a′)

= (a − ab−1c′(cb−1c′)−1c)b−1(a′ − c′(cb−1c′)−1cb−1a′)

= ab−1a′ − ab−1c′(cb−1c′)−1cb−1a′ − ab−1c′(cb−1c′)−1cb−1a′

+ ab−1c′(cb−1c′)−1cb−1c′(cb−1c′)−1cb−1a′

= ab−1a′ − ab−1c′(cb−1c′)−1cb−1a′,

where we use the fact that b and cb−1c′ are self adjoint and therefore b−1 and (cb−1c′)−1

are self adjoint. Similarly,

ax = ab−1(a′ − c′(cb−1c′)−1cb−1a′)

= x′bx.

Therefore, ax − 1
2 x′bx = 1

2 ax, completing the proof.

Lemma 2. For firms competing f ∈ {p, b, c}, the regional production function is Y f
i (ℓ, m) =

zimηℓ1−ηΦ f (m), where zi ≡ E[z1/η
isn ]η. Furthermore, Φ f (m) ≤ Φp(m) for all f and m.

Proof. This result follows immediately from Lemma 6 and noting that as perfect com-
petition is efficient, it must produce the most conditional on the number of firms and
workers.

16



Lemma 3. For firms competing f ∈ {b, c}, total wage compensation in location i can be written,

wiℓi = (1 − η)zi(mi)
η(ℓi)

1−η
(

Φ f (mi) + Ψ f (mi)
)

,

where Ψ f (mi) ≤ 0.

Proof. This result follows from Propositions 4 and 5 and noting that wages must have a
markdown.

Lemma 4. Expected sectoral HHI, weighted by average productivity shock, converges to 0 as
the number of firms goes to infinity. More precisely, ψN → 0 as N → ∞ where ψN ≡

E

[
∑n∈N z1/η

isn

Nz1/η
i

∑n∈N (z1/η
isn )2(

∑n∈N z1/η
isn

)2

∣∣∣∣N
]

.

Proof. Note that because 1 − Fiz is regularly varying, there exists α and slowly varying
function L3 such that 1 − Fiz(x) = x−αL(x).

Then there are two cases: E[z2/η
isn ] exists and E[z2/η

isn ] does not exist. We will take each
case in turn.

Suppose that E[z2/η
isn ] exists. Then we can write ψN,

ψN =
1

z1/η
i

E

[
1
N

N

∑n∈N z1/η
isn

∑n∈N (z1/η
isn )2

N

∣∣∣∣N
]

.

By the strong law of large numbers, 1
N → 0, N

∑n∈N z1/η
isn

→ 1
E[z1/η

isn ]
, and ∑n∈N (z1/η

isn )2

N → E[z2/η
isn ]

almost surely. Therefore, the integrand converges to 0 almost surely, and ψN → 0.
Suppose that E[z2/η

isn ] does not exist. Then we can rewrite ψN as

ψN = E

[
aN

N2
∑n∈N (z1/η

isn )2

aN

N

∑n z1/η
isn

]
,

where aN is defined so that P(z2/η
isn > aN) = N−1. By Lévy’s theorem,4 1

aN

(
∑n(z

1/η
isn )2

)
converges in distribution to a non-degenerate distribution, N

∑n z1/η
isn

→ 1
E[z1/η

isn ]
almost surely.

That simply leaves aN/N2. Note that

aN

N2 = aNP
(

z2/η
isn > aN

)2

= aNa−α
N L(a1/2

N )2.

3A function is slowly varying if for every a > 0, L(ax)
L(x) → 1 as x → ∞.

4See Durrett (2019).
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This converges to 0 as aN → ∞ if α > 1. But note that since the mean exists, α must be
greater than 1. Further, note that aN → ∞ as N → ∞; otherwise, the variance would exist.
Thus, the integrand must converge to 0 in distribution and ψN → 0.

Lemma 5. Average sectoral HHI has the following properties:

(i) ∂
∂ log m

[∫ 1
0

ℓis
ℓi

∑n∈Nis

(
ℓisn
ℓis

)2
ds
]
< 0; and

(ii) ∂
∂ log m

[∫ 1
0

ℓis
ℓi

∑n∈Nis

(
ℓisn
ℓis

)2
ds
]
→ 0 as m → ∞.

Proof. Recall that ℓisn =
(
(1−η)zisn

wi

) 1
η where wi = (1 − η)ℓ

−η
i mη

i zi. Therefore,

∫ 1

0

ℓis

ℓi
∑

n∈Nis

(
ℓisn

ℓis

)2

ds =
∫ 1

0

ℓim−1
i z

− 1
η

i ∑n∈Nis
z

1
η

isn
ℓi

∑
n∈Nis

 z
1
η

isn

∑n′∈Nis
z

1
η

isn′


2

ds

=
∫ 1

0

Nis

mi

∑n∈Nis
z1/η

isn

Nisz
1/η
i

∑n∈Nis
(z1/η

isn )2(
∑n∈Nis

z1/η
isn

)2 ds

We can then break this integral up into an expectation over the number of firms in
the sector and, conditional number of firms, the expected productivity shocks. We will

denote ψN = E

[
∑n∈N z1/η

isn

Nz1/η
i

∑n∈N (z1/η
isn )2(

∑n∈N z1/η
isn

)2 |N
]

. Then we have

∫ 1

0

ℓis

ℓi
∑

n∈Nis

(
ℓisn

ℓis

)2

=
∞

∑
N=0

N
m

ψN
mNe−m

N!
.

Then we can take the derivative with respect to m,

∂

∂m

∫ 1

0

ℓis

ℓi
∑

n∈Nis

(
ℓisn

ℓis

)2
 =

∂

∂m

[
∞

∑
N=1

N
m

ψN
mNe−m

N!

]

= ∑
N=1

(N − 1)NψN
mN−2e−m

N!
− ∑

N=1
NψN

mN−1e−m

N!

= ∑
N=2

ψN
mN−2e−m

(N − 2)!
− ∑

N=2
ψN−1

mN−2e−m

(N − 2)!

= ∑
N=2

(ψN − ψN−1)
mN−2e−m

(N − 2)!
< 0,
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where the inequality comes from the fact that ψN is decreasing so ψN − ψN−1 < 0.
Therefore, HHI is decreasing.

We next turn to proving Lemma 5.2, that m ∂
∂m

[∫ 1
0

ℓis
ℓi

∑n∈Nis

(
ℓisn
ℓis

)2
]

converges to zero
as m → ∞.

We start by showing that ∂
∂m

[∫ 1
0

ℓis
ℓi

∑n∈Nis

(
ℓisn
ℓis

)2
]
→ 0. Take ϵ > 0. Since ψN → 0,

there is some N such that for N ≥ N, ψN < ϵ
2 . Notice that mx−2e−m

(x−2)! ∈ (0, 1). And also

notice that mx−2e−m

(x−2)! → 0 as m → ∞.

Thus, there is a m such that for m > m, mx−2e−m

(x−2)! < 1
ψ1

ϵ
2 for all x ≤ N. Therefore, for

m > m,

∂

∂m

∫ 1

0

ℓis

ℓi
∑

n∈Nis

(
ℓisn

ℓis

)2
 =

∞

∑
N=2

(ψN − ψN−1)
mx−2e−m

(x − 2)!

>
N

∑
N=2

(ψN − ψN−1)
mx−2e−m

(x − 2)!
+

∞

∑
N=N+1

(ψN − ψN−1)

=
N

∑
N=2

(ψN − ψN−1)
mx−2e−m

(x − 2)!
− ψN

>
N

∑
N=2

(ψN − ψN−1)
1

ψ1

ϵ

2
− ϵ

2

= −ϵ

2
− ϵ

2
.

Furthermore, the second derivative is positive for sufficiently large m,

∂2

∂m2

∫ 1

0

ℓis

ℓi
∑

n∈Nis

(
ℓisn

ℓis

)2
 =

∞

∑
N=3

((ψN − ψN−1)− (ψN−1 − ψN−2))
mN−3e−m

(N − 3)!
> 0,

because ψN is convex for sufficiently large N. Therefore, we have a function f (x) such
that f (x) → 0, f ′(x) → 0 and f ′′(x) > 0. It then follows that x f ′(x) → 0. That is

m ∂
∂m

[∫ 1
0

ℓis
ℓi

∑n∈Nis

(
ℓisn
ℓis

)2
]
→ 0.

To see this, suppose that x f ′(x) does not converge to zero. Then there is a ϵ > 0
and a sequence of xn → ∞ such that xn f ′(xn) < −ϵ. As f ′′(x) > 0, it follows that
f ′(x) < f ′(xn) < − ϵ

xn
for all x < xn. Therefore,
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f (x) = f (0) +
∫ x

0
f ′(t)dt

< f (0) +
N:xN<x

∑
n=1

∫ xn

xn−1

f ′(xn)dt +
∫ x

XN

f ′(x)dt

< f (0)−
N:xN<x

∑
n=1

(xn − xn−1)
ϵ

xn
+ (x − xN) f ′(x)

→ f (0)−
∞

∑
n=1

(xn − xn−1)
ϵ

xn

But then
∞

∑
n=1

(xn − xn−1)
ϵ

xn
≈ ϵ

∫ ∞

0

1
x

dx → ∞.

Therefore, this contradicts, f (x) → 0 so x f ′(x) must converge to 0.

Lemma 6. The regional production function is Yi(ℓ, m) = zimηℓ1−ηΦ̃(m), where zi ≡ E[z1/η
isn ]η

and Φ̃(m) is given by,

Φ̃(m) ≡ E[asn(ω)] + (1 − η)
∫ 1

0

ℓs

ℓ ∑
n∈Ns

ℓsn

ℓs
E[âsn(ω)ℓ̂sn(ω)]ds

− η
1 − η

2

∫ 1

0

ℓs

ℓ ∑
n∈Ns

ℓsn

ℓs
E[ℓ̂sn(ω)2]ds

− 1
κ

1 − η

2

∫ 1

0

ℓs

ℓ ∑
n∈Ns

ℓsn

ℓs
E

[(
ℓ̂sn(ω)− ℓ̂sn

)2
]

ds

−
(

1
ν
− 1

κ

)
1 − η

2

∫ 1

0

ℓs

ℓ
E

[(
ℓ̂s(ω)− ℓ̂s

)2
]

ds. (14)

Proof. Expected production is
∫ 1

0 ∑n∈Nis
zisnaisn(ω)ℓisn(ω)1−ηds. We will do a second or-

der approximation around the point log ãisn(ω) = log Ãis(ω) = 0.
We start by characterizing the solution at that point. We find that there is some wi such

that
wi = (1 − η)zisn(ℓisn)

−η,
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so that ℓisn =
(
(1−η)zisn

wi

) 1
η . Then labor clearing requires

ℓi =
∫ 1

0
ℓiLisds =

∫ 1

0
∑

n∈Nis

ℓisnds =
∫ 1

0
∑

n∈Nis

(
(1 − η)zisn

wi

) 1
η

ds.

This implies that wi = (1 − η)ℓ
−η
i mη

i E
[
z1/η

isn

]η
. Then production is

Yi =
∫ 1

0
∑

n∈Nis

zisn

(
(1 − η)zisn

wi

) 1−η
η

ds = ziℓ
1−η
i mη

i ,

where zi = E
[
z1/η

isn

]η
.

Taking the log second order approximation to production gives

Yi ≈ zi(mi)
η(ℓi)

1−η
∫ 1

0
∑

n∈Nis

ℓisn

ℓi

(
1 +

(
âisn(ω) + (1 − η)ℓ̂isn(ω)

)
+

1
2

(
âisn(ω) + (1 − η)ℓ̂isn(ω)

)2
)

ds.

To transform this to be completely second order, we do a second order approximation to
the labor constraints,

−1
κ
ℓ̂is +

1 + κ

κ
ℓ̂is(ω) +

1
2

(
−1

κ
ℓ̂is +

1 + κ

κ
ℓ̂is(ω)

)2

=

∑
n∈Nis

ℓisn

ℓis

[
− 1

κ
ℓ̂isn +

1 + κ

κ
ℓ̂isn(ω) +

1
2

(
−1

κ
ℓ̂isn +

1 + κ

κ
ℓ̂isn(ω)

)2 ]
,

0 =
∫ 1

0

ℓis

ℓi

[
− 1

ν
ℓ̂is +

1 + ν

ν
ℓ̂is(ω) +

1
2

(
−1

ν
ℓ̂is +

1 + ν

ν
ℓ̂is(ω)

)2 ]
ds,

ℓ̂is +
1
2
ℓ̂2

is = ∑
n∈Nis

ℓisn

ℓis

(
ℓ̂isn +

1
2
ℓ̂2

isn

)
,

and

0 =
∫ 1

0

ℓis

ℓi

(
ℓ̂is +

1
2
ℓ̂2

is

)
ds,

where we use the fact ℓ̂isn(ω) = L̂isn(ω).
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Then we can transform
∫ 1

0 ∑n∈Nis
ℓisn
ℓi
ℓ̂isn(ω)ds to second order. That is,

∫ 1

0
∑

n∈Nis

ℓisn

ℓi
ℓ̂isn(ω)ds = −1

2
κ

1 + κ

∫ 1

0

ℓis

ℓi
∑

n∈Nis

ℓisn

ℓis

(
−1

κ
ℓ̂isn +

1 + κ

κ
ℓ̂isn(ω)

)2

ds

+
1
2

κ

1 + κ

∫ 1

0

ℓis

ℓi

(
−1

κ
ℓ̂is +

1 + κ

κ
ℓ̂is(ω)

)2

ds

+
1

1 + κ

∫ 1

0

ℓis

ℓi
∑

n∈Nis

ℓisn

ℓis
ℓ̂isnds − 1

1 + κ

∫ 1

0

ℓis

ℓi
ℓ̂isds

+
∫ 1

0

ℓis

ℓi
ℓ̂is(ω)ds

= −1
2

κ

1 + κ

∫ 1

0

ℓis

ℓi
∑

n∈Nis

ℓisn

ℓis

(
−1

κ
ℓ̂isn +

1 + κ

κ
ℓ̂isn(ω)

)2

ds

+
1
2

κ

1 + κ

∫ 1

0

ℓis

ℓi

(
−1

κ
ℓ̂is +

1 + κ

κ
ℓ̂is(ω)

)2

ds

− 1
2

ν

1 + ν

∫ 1

0

ℓis

ℓi

(
−1

ν
ℓ̂is +

1 + ν

ν
ℓ̂is(ω)

)2

ds

+
1

1 + ν

∫ 1

0

ℓis

ℓi
ℓ̂isds

+
1

1 + κ

∫ 1

0

ℓis

ℓi
∑

n∈Nis

ℓisn

ℓis
ℓ̂isnds − 1

1 + κ

∫ 1

0

ℓis

ℓi
ℓ̂isds

= −1
2

κ

1 + κ

∫ 1

0

ℓis

ℓi
∑

n∈Nis

ℓisn

ℓis

(
−1

κ
ℓ̂isn +

1 + κ

κ
ℓ̂isn(ω)

)2

ds

+
1
2

κ

1 + κ

∫ 1

0

ℓis

ℓi

(
−1

κ
ℓ̂is +

1 + κ

κ
ℓ̂is(ω)

)2

ds

− 1
2

ν

1 + ν

∫ 1

0

ℓis

ℓi

(
−1

ν
ℓ̂is +

1 + ν

ν
ℓ̂is(ω)

)2

ds

− 1
2

1
1 + κ

∫ 1

0

ℓis

ℓi
∑

n∈Nis

ℓisn

ℓis
ℓ̂2

isnds

+
1
2

1
1 + κ

∫ 1

0

ℓis

ℓi
ℓ̂2

isds

− 1
2

1
1 + ν

∫ 1

0

ℓis

ℓi
ℓ̂2

isds

= −1
2

∫ 1

0

ℓis

ℓi
∑

n∈Nis

ℓisn

ℓis
ℓ̂isn(ω)2ds
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− 1
2

1
κ

∫ 1

0

ℓis

ℓi
∑

n∈Nis

ℓisn

ℓis

(
ℓ̂isn(ω)− ℓ̂isn

)2
ds

− 1
2

(
1
ν
− 1

κ

) ∫ 1

0

ℓis

ℓis

(
ℓ̂is(ω)− ℓ̂is

)2
ds.

Substituting this into the expression for the log second order approximation to pro-
duction gives

Yi

zi(mi)η(ℓi)1−η
≈ 1 + E[âisn(ω)] +

1
2

E[âisn(ω)2]

+ (1 − η)
∫ 1

0
∑

n∈Nis

ℓisn

ℓi
âisn(ω)ℓ̂isn(ω)ds

+
(1 − η)2

2

∫ 1

0
∑

n∈Nis

ℓisn

ℓi
ℓ̂isn(ω)2ds

− 1 − η

2

∫ 1

0

ℓis

ℓi
∑

n∈Nis

ℓisn

ℓis
ℓ̂isn(ω)2ds

− 1 − η

2
1
κ

∫ 1

0

ℓis

ℓi
∑

n∈Nis

ℓisn

ℓis

(
ℓ̂isn(ω)− ℓ̂isn

)2
ds

− 1 − η

2

(
1
ν
− 1

κ

) ∫ 1

0

ℓis

ℓis

(
ℓ̂is(ω)− ℓ̂is

)2
ds

≈ E[aisn(ω)] + (1 − η)
∫ 1

0
∑

n∈Nis

ℓisn

ℓi
âisn(ω)ℓ̂isn(ω)ds

− 1 − η

2

∫ 1

0

ℓis

ℓi
∑

n∈Nis

ℓisn

ℓis
ℓ̂isn(ω)2ds

− 1 − η

2
η

1
κ

∫ 1

0

ℓis

ℓi
∑

n∈Nis

ℓisn

ℓis

(
ℓ̂isn(ω)− ℓ̂isn

)2
ds

− 1 − η

2

(
1
ν
− 1

κ

) ∫ 1

0

ℓis

ℓis

(
ℓ̂is(ω)− ℓ̂is

)2
ds,

where we use the fact that to log second order, E[asn(ω)] ≈ 1 + E[âsn(ω)] + 1
2E[âsn(ω)2].
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3 Equilibrium Conditions

In this section, we restate the equilibrium conditions.

3.1 Competitive Equilibrium

The competitive equilibrium is characterized by the following equations.

Migration Decision.

ℓi =

(
uiwi

u

)θ

ℓ; u =

(
∑
i∈I

(uiwi)
θ

) 1
θ

Competitive Wages.
wi = (1 − η)zi(mi)

η(ℓi)
−ηΦc(mi)

Free Entry.
ψi = ηzim

η−1
i (ℓi)

1−ηΦc(mi)

3.2 Imperfect Competition

With imperfect competition f ∈ {b, c}, workers are no longer paid their competitive
wages.

Adjusted Wages.
wi = (1 − η)zi(mi)

η(ℓi)
−η(Φ f (mi) + Ψ f (mi))

Adjusted Free Entry.

ψi =
zi(mi)

η(ℓi)
1−ηΦ f (mi)− (1 − η)zi(mi)

η(ℓi)
1−η(Φ f (mi) + Ψ f (mi))

mi

= η(mi)
η−1(ℓi)

1−ηΦ f (mi)

(
1 − 1 − η

η

Ψ f (mi)

Φ f (mi)

)

3.3 Planner’s Solution

We assume the planner pays for the entry and wages subsidies with proportional taxes
on all workers. Therefore, the migration decision does not change. However, for all
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f ∈ {p, b, c} the free entry condition is replaced with the first-best level of entry condition,

ψi = ηzim
η−1
i (ℓi)

1−ηΦ f (mi)

(
1 +

1
η

∂ log Φ f (mi)

∂ log m

)
.

Furthermore, wages must be such that workers get their marginal product,

wi = (1 − η)zi(mi)
η(ℓi)

−ηΦ f (mi)
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